风平老涡 发表于 2021-1-26 00:34
去网上搜一搜,应该有很多的。
jlg1206 发表于 2021-1-31 18:57
翻墙搜了很多,但都不能运行,编译不能通过。我也查了很多书带的子程序,但是可能代码太老也是没法编译 ...
51.88 KB, 下载次数: 20
6.68 KB, 下载次数: 9
jlg1206 发表于 2021-1-31 18:57
翻墙搜了很多,但都不能运行,编译不能通过。我也查了很多书带的子程序,但是可能代码太老也是没法编译 ...
MODULE Complex_Bessel
! SUBROUTINE CBSSLJ evaluates Bessel functions of complex ORDER
! SUBROUTINE CBSSLJ(x, nu, w)
! x = argument, nu = order, w = function value
! Latest revision - 20 July 2001
! amiller @ bigpond.net.au
! WARNING (from the NSWC Math. Library Manual)
! Precision:
! The real and imaginary parts are normally accurate to 11-12 significant
! digits when the function value is not near zero. The exception is when
! Real(z) is small, Imag(nu) is small, and 14 < |z| < 17.5 + 0.5|nu|^2
! In this region, the real part of the result is still accurate, but all
! accuracy may be lost in the imaginary part.
USE constants_NSWC
IMPLICIT NONE
CONTAINS
FUNCTION cpabs(x, y) RESULT(fn_val)
! --------------------------------------
! EVALUATION OF SQRT(X*X + Y*Y)
! --------------------------------------
REAL (dp), INTENT(IN) :: x, y
REAL (dp) :: fn_val
! Local variable
REAL (dp) :: a
IF (ABS(x) > ABS(y)) THEN
a = y / x
fn_val = ABS(x) * SQRT(1.0_dp + a*a)
RETURN
END IF
IF (y /= 0.0_dp) THEN
a = x / y
fn_val = ABS(y) * SQRT(1.0_dp + a*a)
RETURN
END IF
fn_val = 0.0_dp
RETURN
END FUNCTION cpabs
SUBROUTINE dcrec(x, y, u, v)
!-----------------------------------------------------------------------
! COMPLEX RECIPROCAL U + I*V = 1/(X + I*Y)
!-----------------------------------------------------------------------
REAL (dp), INTENT(IN) :: x, y
REAL (dp), INTENT(OUT) :: u, v
! Local variables
REAL (dp) :: t, d
IF (ABS(x) <= ABS(y)) THEN
t = x / y
d = y + t * x
u = t / d
v = -1.0_dp / d
RETURN
END IF
t = y / x
d = x + t * y
u = 1.0_dp / d
v = -t / d
RETURN
END SUBROUTINE dcrec
FUNCTION cdiv(a,b) RESULT(fn_val)
!-----------------------------------------------------------------------
! COMPLEX DIVISION A/B WHERE B IS NONZERO
!-----------------------------------------------------------------------
COMPLEX (dp), INTENT(IN) :: a, b
COMPLEX (dp) :: fn_val
REAL (dp) :: ai, ar, bi, br, d, t
REAL (dp) :: u, v
ar = REAL(a, KIND=dp)
ai = AIMAG(a)
br = REAL(b, KIND=dp)
bi = AIMAG(b)
IF (ABS(br) >= ABS(bi)) THEN
t = bi / br
d = br + t * bi
u = (ar+ai*t) / d
v = (ai-ar*t) / d
fn_val = CMPLX(u,v, KIND=dp)
RETURN
END IF
t = br / bi
d = bi + t * br
u = (ar*t+ai) / d
v = (ai*t-ar) / d
fn_val = CMPLX(u,v, KIND=dp)
RETURN
END FUNCTION cdiv
FUNCTION dsin1(x) RESULT(fn_val)
!-----------------------------------------------------------------------
! REAL (dp) EVALUATION OF SIN(PI*X)
! --------------
! THE EXPANSION FOR SIN(PI*A) (ABS(A) <= PI/4) USING A1,...,A13
! IS ACCURATE TO WITHIN 2 UNITS OF THE 40-TH SIGNIFICANT DIGIT, AND
! THE EXPANSION FOR COS(PI*A) (ABS(A) <= PI/4) USING B1,...,B13
! IS ACCURATE TO WITHIN 4 UNITS OF THE 40-TH SIGNIFICANT DIGIT.
!-----------------------------------------------------------------------
REAL (dp), INTENT(IN) :: x
REAL (dp) :: fn_val
! Local variables
REAL (dp) :: a, t, w
REAL (dp), PARAMETER :: pi = 3.141592653589793238462643383279502884197D+00
REAL (dp), PARAMETER :: a1 = -.1028083791780141522795259479153765743002D+00, &
a2 = .3170868848763100170457042079710451905600D-02, &
a3 = -.4657026956105571623449026167864697920000D-04, &
a4 = .3989844942879455643410226655783424000000D-06, &
a5 = -.2237397227721999776371894030796800000000D-08, &
a6 = .8847045483056962709715066675200000000000D-11, &
a7 = -.2598715447506450292885585920000000000000D-13, &
a8 = .5893449774331011070033920000000000000000D-16 , &
a9 = -.1062975472045522550784000000000000000000D-18, &
a10 = .1561182648301780992000000000000000000000D-21, &
a11 = -.1903193516670976000000000000000000000000D-24, &
a12 = .1956617650176000000000000000000000000000D-27, &
a13 = -.1711276032000000000000000000000000000000D-30
REAL (dp), PARAMETER :: b1 = -.3084251375340424568385778437461297229882D+00, &
b2 = .1585434424381550085228521039855226435920D-01, &
b3 = -.3259918869273900136414318317506279360000D-03, &
b4 = .3590860448591510079069203991239232000000D-05, &
b5 = -.2461136950494199754009084061808640000000D-07, &
b6 = .1150115912797405152263195572224000000000D-09, &
b7 = -.3898073171259675439899172864000000000000D-12, &
b8 = .1001886461636271969091584000000000000000D-14, &
b9 = -.2019653396886572027084800000000000000000D-17, &
b10 = .3278483561466560512000000000000000000000D-20, &
b11 = -.4377345082051788800000000000000000000000D-23, &
b12 = .4891532381388800000000000000000000000000D-26, &
b13 = -.4617089843200000000000000000000000000000D-29
INTEGER :: max, n
!------------------------
! ****** MAX IS A MACHINE DEPENDENT CONSTANT. MAX IS THE
! LARGEST POSITIVE INTEGER THAT MAY BE USED.
! MAX = IPMPAR(3)
max = HUGE(3)
!------------------------
a = ABS(x)
t = MAX
IF (a >= t) THEN
fn_val = 0.0_dp
RETURN
END IF
n = a
t = n
a = a - t
IF (a <= 0.75_dp) THEN
IF (a < 0.25_dp) GO TO 10
! 0.25 <= A <= 0.75
a = 0.25_dp + (0.25_dp-a)
t = 16._dp * a * a
fn_val = (((((((((((((b13*t + b12)*t + b11)*t + b10)*t + b9)*t + b8)*t &
+ b7)*t + b6)*t + b5)*t + b4)*t + b3)*t + b2)*t + b1)*t + &
0.5_dp) + 0.5_dp
GO TO 20
END IF
! A < 0.25 OR A > 0.75
a = 0.25_dp + (0.75_dp-a)
10 t = 16._dp * a * a
w = (((((((((((((a13*t + a12)*t + a11)*t + a10)*t + a9)*t + a8)*t + a7)*t &
+ a6)*t + a5)*t + a4)*t + a3)*t + a2)*t + a1)*t + 0.5_dp) + 0.5_dp
fn_val = pi * a * w
! TERMINATION
20 IF (x < 0.0) fn_val = -fn_val
IF (MOD(n,2) /= 0) fn_val = -fn_val
RETURN
END FUNCTION dsin1
FUNCTION dcos1 (x) RESULT(fn_val)
!-----------------------------------------------------------------------
! REAL (dp) EVALUATION OF COS(PI*X)
! --------------
! THE EXPANSION FOR SIN(PI*A) (ABS(A) .LE. PI/4) USING A1,...,A13
! IS ACCURATE TO WITHIN 2 UNITS OF THE 40-TH SIGNIFICANT DIGIT, AND
! THE EXPANSION FOR COS(PI*A) (ABS(A) .LE. PI/4) USING B1,...,B13
! IS ACCURATE TO WITHIN 4 UNITS OF THE 40-TH SIGNIFICANT DIGIT.
!-----------------------------------------------------------------------
REAL (dp), INTENT(IN) :: x
REAL (dp) :: fn_val
REAL (dp) :: a, t, w
INTEGER :: MAX, n
!------------------------
REAL (dp), PARAMETER :: pi = 3.141592653589793238462643383279502884197_dp
!------------------------
REAL (dp), PARAMETER :: &
a1 = -.1028083791780141522795259479153765743002D+00, &
a2 = .3170868848763100170457042079710451905600D-02, &
a3 = -.4657026956105571623449026167864697920000D-04, &
a4 = .3989844942879455643410226655783424000000D-06, &
a5 = -.2237397227721999776371894030796800000000D-08, &
a6 = .8847045483056962709715066675200000000000D-11, &
a7 = -.2598715447506450292885585920000000000000D-13, &
a8 = .5893449774331011070033920000000000000000D-16, &
a9 = -.1062975472045522550784000000000000000000D-18, &
a10 = .1561182648301780992000000000000000000000D-21, &
a11 = -.1903193516670976000000000000000000000000D-24, &
a12 = .1956617650176000000000000000000000000000D-27, &
a13 = -.1711276032000000000000000000000000000000D-30
!------------------------
REAL (dp), PARAMETER :: &
b1 = -.3084251375340424568385778437461297229882D+00, &
b2 = .1585434424381550085228521039855226435920D-01, &
b3 = -.3259918869273900136414318317506279360000D-03, &
b4 = .3590860448591510079069203991239232000000D-05, &
b5 = -.2461136950494199754009084061808640000000D-07, &
b6 = .1150115912797405152263195572224000000000D-09, &
b7 = -.3898073171259675439899172864000000000000D-12, &
b8 = .1001886461636271969091584000000000000000D-14, &
b9 = -.2019653396886572027084800000000000000000D-17, &
b10 = .3278483561466560512000000000000000000000D-20, &
b11 = -.4377345082051788800000000000000000000000D-23, &
b12 = .4891532381388800000000000000000000000000D-26, &
b13 = -.4617089843200000000000000000000000000000D-29
!------------------------
! ****** MAX IS A MACHINE DEPENDENT CONSTANT. MAX IS THE
! LARGEST POSITIVE INTEGER THAT MAY BE USED.
MAX = HUGE(0)
!------------------------
a = ABS(x)
t = MAX
IF (a < t) GO TO 10
fn_val = 1.d0
RETURN
10 n = a
t = n
a = a - t
IF (a > 0.75D0) GO TO 20
IF (a < 0.25D0) GO TO 21
! 0.25 .LE. A .LE. 0.75
a = 0.25D0 + (0.25D0 - a)
t = 16.d0*a*a
w = (((((((((((((a13*t + a12)*t + a11)*t + a10)*t + a9)*t + &
a8)*t + a7)*t + a6)*t + a5)*t + a4)*t + a3)*t + a2)*t + a1)*t + 0.5D0) + 0.5D0
fn_val = pi*a*w
GO TO 30
! A .LT. 0.25 OR A .GT. 0.75
20 a = 0.25D0 + (0.75D0 - a)
n = n - 1
21 t = 16.d0*a*a
fn_val = (((((((((((((b13*t + b12)*t + b11)*t + b10)*t + b9)*t + b8)*t + &
b7)*t + b6)*t + b5)*t + b4)*t + b3)*t + b2)*t + b1)*t + 0.5D0) + 0.5D0
! TERMINATION
30 IF (MOD(n,2) /= 0) fn_val = -fn_val
RETURN
END FUNCTION dcos1
FUNCTION drexp(x) RESULT(fn_val)
!-----------------------------------------------------------------------
! EVALUATION OF THE FUNCTION EXP(X) - 1
!-----------------------------------------------------------------------
REAL (dp), INTENT(IN) :: x
REAL (dp) :: fn_val
! Local variables
REAL (dp) :: e, w, z
REAL (dp) :: a0 = .248015873015873015873016D-04, &
a1 = -.344452080605731005808147D-05, a2 = .206664230430046597475413D-06, &
a3 = -.447300111094328162971036D-08, a4 = .114734027080634968083920D-11, &
b1 = -.249994190011341852652396D+00, b2 = .249987228833107957725728D-01, &
b3 = -.119037506846942249362528D-02, b4 = .228908693387350391768682D-04
REAL (dp) :: c1 = .1666666666666666666666666666666667D+00, &
c2 = .4166666666666666666666666666666667D-01, &
c3 = .8333333333333333333333333333333333D-02, &
c4 = .1388888888888888888888888888888889D-02, &
c5 = .1984126984126984126984126984126984D-03
!---------------------------
IF (ABS(x) <= 0.15_dp) THEN
! Z IS A MINIMAX APPROXIMATION OF THE SERIES
! C6 + C7*X + C8*X**2 + ....
! THIS APPROXIMATION IS ACCURATE TO WITHIN
! 1 UNIT OF THE 23-RD SIGNIFICANT DIGIT.
! THE RESULTING VALUE FOR W IS ACCURATE TO
! WITHIN 1 UNIT OF THE 33-RD SIGNIFICANT DIGIT.
z = ((((a4*x + a3)*x + a2)*x + a1)*x + a0) / &
((((b4*x + b3)*x + b2)*x + b1)*x + 1._dp)
w = ((((((z*x + c5)*x + c4)*x + c3)*x + c2)*x + c1)*x + 0.5_dp)*x + 1._dp
fn_val = x * w
RETURN
END IF
IF (x >= 0.0_dp) THEN
e = EXP(x)
fn_val = e * (0.5_dp + (0.5_dp - 1.0_dp/e))
RETURN
END IF
IF (x >= -77._dp) THEN
fn_val = (EXP(x)-0.5_dp) - 0.5_dp
RETURN
END IF
fn_val = -1._dp
RETURN
END FUNCTION drexp
SUBROUTINE dcgama(mo, z, w)
!-----------------------------------------------------------------------
! EVALUATION OF THE COMPLEX GAMMA AND LOGGAMMA FUNCTIONS
! ---------------
! MO IS AN INTEGER. Z AND W ARE INTERPRETED AS REAL (dp)
! COMPLEX NUMBERS. IT IS ASSUMED THAT Z(1) AND Z(2) ARE THE REAL
! AND IMAGINARY PARTS OF THE COMPLEX NUMBER Z, AND THAT W(1) AND
! W(2) ARE THE REAL AND IMAGINARY PARTS OF W.
! W = GAMMA(Z) IF MO = 0
! W = LN(GAMMA(Z)) OTHERWISE
!-----------------------------------------------------------------------
INTEGER, INTENT(IN) :: mo
COMPLEX (dp), INTENT(IN) :: z
COMPLEX (dp), INTENT(OUT) :: w
! Local variables
REAL (dp), PARAMETER :: c0(30) &
= (/ .8333333333333333333333333333333333333333D-01, &
-.2777777777777777777777777777777777777778D-02, &
.7936507936507936507936507936507936507937D-03, &
-.5952380952380952380952380952380952380952D-03, &
.8417508417508417508417508417508417508418D-03, &
-.1917526917526917526917526917526917526918D-02, &
.6410256410256410256410256410256410256410D-02, &
-.2955065359477124183006535947712418300654D-01, &
.1796443723688305731649384900158893966944D+00, &
-.1392432216905901116427432216905901116427D+01, &
.1340286404416839199447895100069013112491D+02, &
-.1568482846260020173063651324520889738281D+03, &
.2193103333333333333333333333333333333333D+04, &
-.3610877125372498935717326521924223073648D+05, &
.6914722688513130671083952507756734675533D+06, &
-.1523822153940741619228336495888678051866D+08, &
.3829007513914141414141414141414141414141D+09, &
-.1088226603578439108901514916552510537473D+11, &
.3473202837650022522522522522522522522523D+12, &
-.1236960214226927445425171034927132488108D+14, &
.4887880647930793350758151625180229021085D+15, &
-.2132033396091937389697505898213683855747D+17, &
.1021775296525700077565287628053585500394D+19, &
-.5357547217330020361082770919196920448485D+20, &
.3061578263704883415043151051329622758194D+22, &
-.1899991742639920405029371429306942902947D+24, &
.1276337403382883414923495137769782597654D+26, &
-.9252847176120416307230242348347622779519D+27, &
.7218822595185610297836050187301637922490D+29, &
-.6045183405995856967743148238754547286066D+31 /), &
dlpi = 1.144729885849400174143427351353058711647_dp, &
hl2p = .9189385332046727417803297364056176398614_dp, &
pi = 3.141592653589793238462643383279502884197_dp, &
pi2 = 6.283185307179586476925286766559005768394_dp
REAL (dp) :: a, a1, a2, c, cn, cut, d, eps, et, e2t, h1, h2, q1, q2, s, sn, &
s1, s2, t, t1, t2, u, u1, u2, v1, v2, w1, w2, x, y, y2
INTEGER :: j, k, max, n, nm1
!---------------------------
! DLPI = LOG(PI)
! HL2P = 0.5 * LOG(2*PI)
!---------------------------
! ****** MAX AND EPS ARE MACHINE DEPENDENT CONSTANTS.
! MAX IS THE LARGEST POSITIVE INTEGER THAT MAY
! BE USED, AND EPS IS THE SMALLEST NUMBER SUCH
! THAT 1._dp + EPS > 1._dp.
! MAX = IPMPAR(3)
max = HUGE(3)
eps = EPSILON(1.0_dp)
!---------------------------
x = REAL(z, KIND=dp)
y = AIMAG(z)
IF (x < 0._dp) THEN
!-----------------------------------------------------------------------
! CASE WHEN THE REAL PART OF Z IS NEGATIVE
!-----------------------------------------------------------------------
y = ABS(y)
t = -pi * y
et = EXP(t)
e2t = et * et
! SET A1 = (1 + E2T)/2 AND A2 = (1 - E2T)/2
a1 = 0.5_dp * (1._dp+e2t)
t2 = t + t
IF (t2 >= -0.15_dp) THEN
a2 = -0.5_dp * drexp(t2)
ELSE
a2 = 0.5_dp * (0.5_dp+(0.5_dp-e2t))
END IF
! COMPUTE SIN(PI*X) AND COS(PI*X)
u = MAX
IF (ABS(x) >= MIN(u,1._dp/eps)) GO TO 80
k = ABS(x)
u = x + k
k = MOD(k,2)
IF (u <= -0.5_dp) THEN
u = 0.5_dp + (0.5_dp+u)
k = k + 1
END IF
u = pi * u
sn = SIN(u)
cn = COS(u)
IF (k == 1) THEN
sn = -sn
cn = -cn
END IF
! SET H1 + H2*I TO PI/SIN(PI*Z) OR LOG(PI/SIN(PI*Z))
a1 = sn * a1
a2 = cn * a2
a = a1 * a1 + a2 * a2
IF (a == 0._dp) GO TO 80
IF (mo == 0) THEN
h1 = a1 / a
h2 = -a2 / a
c = pi * et
h1 = c * h1
h2 = c * h2
ELSE
h1 = (dlpi+t) - 0.5_dp * LOG(a)
h2 = -ATAN2(a2,a1)
END IF
IF (AIMAG(z) >= 0._dp) THEN
x = 1.0 - x
y = -y
ELSE
h2 = -h2
x = 1.0 - x
END IF
END IF
!-----------------------------------------------------------------------
! CASE WHEN THE REAL PART OF Z IS NONNEGATIVE
!-----------------------------------------------------------------------
w1 = 0._dp
w2 = 0._dp
n = 0
t = x
y2 = y * y
a = t * t + y2
cut = 225._dp
IF (eps > 1.d-30) cut = 144._dp
IF (eps > 1.d-20) cut = 64._dp
IF (a < cut) THEN
IF (a == 0._dp) GO TO 80
10 n = n + 1
t = t + 1._dp
a = t * t + y2
IF (a < cut) GO TO 10
! LET S1 + S2*I BE THE PRODUCT OF THE TERMS (Z+J)/(Z+N)
u1 = (x*t+y2) / a
u2 = y / a
s1 = u1
s2 = n * u2
IF (n >= 2) THEN
u = t / a
nm1 = n - 1
DO j = 1, nm1
v1 = u1 + j * u
v2 = (n-j) * u2
c = s1 * v1 - s2 * v2
d = s1 * v2 + s2 * v1
s1 = c
s2 = d
END DO
END IF
! SET W1 + W2*I = LOG(S1 + S2*I) WHEN MO IS NONZERO
s = s1 * s1 + s2 * s2
IF (mo /= 0) THEN
w1 = 0.5_dp * LOG(s)
w2 = ATAN2(s2,s1)
END IF
END IF
! SET V1 + V2*I = (Z - 0.5) * LOG(Z + N) - Z
t1 = 0.5_dp * LOG(a) - 1._dp
t2 = ATAN2(y,t)
u = x - 0.5_dp
v1 = (u*t1-0.5_dp) - y * t2
v2 = u * t2 + y * t1
! LET A1 + A2*I BE THE ASYMPTOTIC SUM
u1 = t / a
u2 = -y / a
q1 = u1 * u1 - u2 * u2
q2 = 2._dp * u1 * u2
a1 = 0._dp
a2 = 0._dp
DO j = 1, 30
t1 = a1
t2 = a2
a1 = a1 + c0(j) * u1
a2 = a2 + c0(j) * u2
IF (a1 == t1) THEN
IF (a2 == t2) GO TO 40
END IF
t1 = u1 * q1 - u2 * q2
t2 = u1 * q2 + u2 * q1
u1 = t1
u2 = t2
END DO
!-----------------------------------------------------------------------
! GATHERING TOGETHER THE RESULTS
!-----------------------------------------------------------------------
40 w1 = (((a1+hl2p)-w1)+v1) - n
w2 = (a2-w2) + v2
IF (REAL(z, KIND=dp) < 0.0_dp) GO TO 60
IF (mo == 0) THEN
! CASE WHEN THE REAL PART OF Z IS NONNEGATIVE AND MO = 0
a = EXP(w1)
w1 = a * COS(w2)
w2 = a * SIN(w2)
IF (n == 0) GO TO 70
c = (s1*w1+s2*w2) / s
d = (s1*w2-s2*w1) / s
w1 = c
w2 = d
GO TO 70
END IF
! CASE WHEN THE REAL PART OF Z IS NONNEGATIVE AND MO IS NONZERO.
! THE ANGLE W2 IS REDUCED TO THE INTERVAL -PI < W2 <= PI.
50 IF (w2 <= pi) THEN
k = 0.5_dp - w2 / pi2
w2 = w2 + pi2 * k
GO TO 70
END IF
k = w2 / pi2 - 0.5_dp
u = k + 1
w2 = w2 - pi2 * u
IF (w2 <= -pi) w2 = pi
GO TO 70
! CASE WHEN THE REAL PART OF Z IS NEGATIVE AND MO IS NONZERO
60 IF (mo /= 0) THEN
w1 = h1 - w1
w2 = h2 - w2
GO TO 50
END IF
! CASE WHEN THE REAL PART OF Z IS NEGATIVE AND MO = 0
a = EXP(-w1)
t1 = a * COS(-w2)
t2 = a * SIN(-w2)
w1 = h1 * t1 - h2 * t2
w2 = h1 * t2 + h2 * t1
IF (n /= 0) THEN
c = w1 * s1 - w2 * s2
d = w1 * s2 + w2 * s1
w1 = c
w2 = d
END IF
! TERMINATION
70 w = CMPLX(w1, w2, KIND=dp)
RETURN
!-----------------------------------------------------------------------
! THE REQUESTED VALUE CANNOT BE COMPUTED
!-----------------------------------------------------------------------
80 w = CMPLX(0.0_dp, 0.0_dp, KIND=dp)
RETURN
END SUBROUTINE dcgama
FUNCTION cgam0(z) RESULT(fn_val)
!-----------------------------------------------------------------------
! EVALUATION OF 1/GAMMA(1 + Z) FOR ABS(Z) < 1.0
!-----------------------------------------------------------------------
COMPLEX (dp), INTENT(IN) :: z
COMPLEX (dp) :: fn_val
COMPLEX (dp) :: w
INTEGER :: i, k, n
!-----------------------
REAL (dp) :: x, y
REAL, PARAMETER :: a(25) = (/ .577215664901533_dp, -.655878071520254_dp, &
-.420026350340952D-01, .166538611382291_dp, -.421977345555443D-01, &
-.962197152787697D-02, .721894324666310D-02, -.116516759185907D-02, &
-.215241674114951D-03, .128050282388116D-03, -.201348547807882D-04, &
-.125049348214267D-0, .113302723198170D-05, -.205633841697761D-0, &
.611609510448142D-08, .500200764446922D-08, -.118127457048702D-08, &
.104342671169110D-09, .778226343990507D-11, -.369680561864221D-11, &
.510037028745448D-12, -.205832605356651D-13, -.534812253942302D-14, &
.122677862823826D-14, -.118125930169746D-15 /)
!-----------------------
n = 25
x = REAL(z, KIND=dp)
y = AIMAG(z)
IF (x*x+y*y <= 0.04D0) n = 14
k = n
w = a(n)
DO i = 2, n
k = k - 1
w = a(k) + z * w
END DO
fn_val = 1.0D0 + z * w
RETURN
END FUNCTION cgam0
FUNCTION dgamma(a) RESULT(fn_val)
!-----------------------------------------------------------------------
! EVALUATION OF THE GAMMA FUNCTION FOR
! REAL (dp) ARGUMENTS
! -----------
! DGAMMA(A) IS ASSIGNED THE VALUE 0 WHEN THE GAMMA FUNCTION CANNOT
! BE COMPUTED.
!-----------------------------------------------------------------------
! WRITTEN BY ALFRED H. MORRIS, JR.
! NAVAL SURFACE WEAPONS CENTER
! DAHLGREN, VIRGINIA
!-----------------------------------------------------------------------
REAL (dp), INTENT(IN) :: a
REAL (dp) :: fn_val
! Local variables
REAL (dp), PARAMETER :: d = 0.41893853320467274178032973640562_dp, &
pi = 3.14159265358979323846264338327950_dp
REAL (dp) :: s, t, x, w
INTEGER :: j, n
!-----------------------------------------------------------------------
! D = 0.5*(LN(2*PI) - 1)
!-----------------------------------------------------------------------
fn_val = 0.0_dp
x = a
IF (ABS(a) <= 20._dp) THEN
!-----------------------------------------------------------------------
! EVALUATION OF DGAMMA(A) FOR ABS(A) <= 20
!-----------------------------------------------------------------------
t = 1.0_dp
n = x
n = n - 1
! LET T BE THE PRODUCT OF A-J WHEN A >= 2
IF (n < 0) THEN
GO TO 40
ELSE IF (n == 0) THEN
GO TO 30
END IF
DO j = 1, n
x = x - 1._dp
t = x * t
END DO
30 x = x - 1._dp
GO TO 60
! LET T BE THE PRODUCT OF A+J WHEN A < 1
40 t = a
IF (a <= 0._dp) THEN
n = -n - 1
IF (n /= 0) THEN
DO j = 1, n
x = x + 1._dp
t = x * t
END DO
END IF
x = (x+0.5_dp) + 0.5_dp
t = x * t
IF (t == 0._dp) RETURN
END IF
! THE FOLLOWING CODE CHECKS IF 1/T CAN OVERFLOW. THIS
! CODE MAY BE OMITTED IF DESIRED.
IF (ABS(t) < 1.d-33) THEN
IF (ABS(t)*HUGE(1.0_dp) <= 1.000000001_dp) RETURN
fn_val = 1._dp / t
RETURN
END IF
! COMPUTE DGAMMA(1 + X) FOR 0 <= X < 1
60 fn_val = 1._dp / (1._dp + dgam1(x))
! TERMINATION
IF (a >= 1._dp) THEN
fn_val = fn_val * t
RETURN
END IF
fn_val = fn_val / t
RETURN
END IF
!-----------------------------------------------------------------------
! EVALUATION OF DGAMMA(A) FOR ABS(A) > 20
!-----------------------------------------------------------------------
IF (ABS(a) >= 1.d3) RETURN
IF (a <= 0._dp) THEN
s = dsin1(a) / pi
IF (s == 0._dp) RETURN
x = -a
END IF
! COMPUTE THE MODIFIED ASYMPTOTIC SUM
w = dpdel(x)
! FINAL ASSEMBLY
w = (d+w) + (x-0.5_dp) * (LOG(x)-1._dp)
IF (w > dxparg(0)) RETURN
fn_val = EXP(w)
IF (a < 0._dp) fn_val = (1._dp/(fn_val*s)) / x
RETURN
END FUNCTION dgamma
FUNCTION glog(x) RESULT(fn_val)
! -------------------
! EVALUATION OF LN(X) FOR X >= 15
! -------------------
REAL (dp), INTENT(IN) :: x
REAL (dp) :: fn_val
! Local variables
REAL (dp), PARAMETER :: c1 = .286228750476730_dp, c2 = .399999628131494+dp, &
c3 = .666666666752663_dp
REAL (dp), PARAMETER :: w(163) = (/ .270805020110221007D+01, .277258872223978124D+01, &
.283321334405621608D+01, .289037175789616469D+01, .294443897916644046D+01, .299573227355399099D+01, .304452243772342300D+01, &
.309104245335831585D+01, .313549421592914969D+01, .317805383034794562D+01, .321887582486820075D+01, .325809653802148205D+01, &
.329583686600432907D+01, .333220451017520392D+01, .336729582998647403D+01, .340119738166215538D+01, .343398720448514625D+01, &
.346573590279972655D+01, .349650756146648024D+01, .352636052461616139D+01, .355534806148941368D+01, .358351893845611000D+01, &
.361091791264422444D+01, .363758615972638577D+01, .366356164612964643D+01, .368887945411393630D+01, .371357206670430780D+01, &
.373766961828336831D+01, .376120011569356242D+01, .378418963391826116D+01, .380666248977031976D+01, .382864139648909500D+01, &
.385014760171005859D+01, .387120101090789093D+01, .389182029811062661D+01, .391202300542814606D+01, .393182563272432577D+01, &
.395124371858142735D+01, .397029191355212183D+01, .398898404656427438D+01, .400733318523247092D+01, .402535169073514923D+01, &
.404305126783455015D+01, .406044301054641934D+01, .407753744390571945D+01, .409434456222210068D+01, .411087386417331125D+01, &
.412713438504509156D+01, .414313472639153269D+01, .415888308335967186D+01, .417438726989563711D+01, .418965474202642554D+01, &
.420469261939096606D+01, .421950770517610670D+01, .423410650459725938D+01, .424849524204935899D+01, .426267987704131542D+01, &
.427666611901605531D+01, .429045944114839113D+01, .430406509320416975D+01, .431748811353631044D+01, .433073334028633108D+01, &
.434380542185368385D+01, .435670882668959174D+01, .436944785246702149D+01, .438202663467388161D+01, .439444915467243877D+01, &
.440671924726425311D+01, .441884060779659792D+01, .443081679884331362D+01, .444265125649031645D+01, .445434729625350773D+01, &
.446590811865458372D+01, .447733681447820647D+01, .448863636973213984D+01, .449980967033026507D+01, .451085950651685004D+01, &
.452178857704904031D+01, .453259949315325594D+01, .454329478227000390D+01, .455387689160054083D+01, .456434819146783624D+01, &
.457471097850338282D+01, .458496747867057192D+01, .459511985013458993D+01, .460517018598809137D+01, .461512051684125945D+01, &
.462497281328427108D+01, .463472898822963577D+01, .464439089914137266D+01, .465396035015752337D+01, .466343909411206714D+01, &
.467282883446190617D+01, .468213122712421969D+01, .469134788222914370D+01, .470048036579241623D+01, .470953020131233414D+01, &
.471849887129509454D+01, .472738781871234057D+01, .473619844839449546D+01, .474493212836325007D+01, .475359019110636465D+01, &
.476217393479775612D+01, .477068462446566476D+01, .477912349311152939D+01, .478749174278204599D+01, .479579054559674109D+01, &
.480402104473325656D+01, .481218435537241750D+01, .482028156560503686D+01, .482831373730230112D+01, .483628190695147800D+01, &
.484418708645859127D+01, .485203026391961717D+01, .485981240436167211D+01, .486753445045558242D+01, .487519732320115154D+01, &
.488280192258637085D+01, .489034912822175377D+01, .489783979995091137D+01, .490527477843842945D+01, .491265488573605201D+01, &
.491998092582812492D+01, .492725368515720469D+01, .493447393313069176D+01, .494164242260930430D+01, .494875989037816828D+01, &
.495582705760126073D+01, .496284463025990728D+01, .496981329957600062D+01, .497673374242057440D+01, .498360662170833644D+01, &
.499043258677873630D+01, .499721227376411506D+01, .500394630594545914D+01, .501063529409625575D+01, .501727983681492433D+01, &
.502388052084627639D+01, .503043792139243546D+01, .503695260241362916D+01, .504342511691924662D+01, .504985600724953705D+01, &
.505624580534830806D+01, .506259503302696680D+01, .506890420222023153D+01, .507517381523382692D+01, .508140436498446300D+01, &
.508759633523238407D+01, .509375020080676233D+01, .509986642782419842D+01, .510594547390058061D+01, .511198778835654323D+01, &
.511799381241675511D+01, .512396397940325892D+01, .512989871492307347D+01, .513579843705026176D+01, .514166355650265984D+01, &
.514749447681345304D+01, .515329159449777895D+01, .515905529921452903D+01, .516478597392351405D+01, .517048399503815178D+01, &
.517614973257382914D+01 /)
REAL (dp) :: t, t2, z
INTEGER :: n
! -------------------
IF (x < 178.0_dp) THEN
n = x
t = (x-n) / (x+n)
t2 = t * t
z = (((c1*t2 + c2)*t2 + c3)*t2 + 2.0) * t
fn_val = w(n-14) + z
RETURN
END IF
fn_val = LOG(x)
RETURN
END FUNCTION glog
SUBROUTINE cbsslj(z,cnu,w)
!-----------------------------------------------------------------------
! EVALUATION OF THE COMPLEX BESSEL FUNCTION J (Z)
! CNU
!-----------------------------------------------------------------------
! WRITTEN BY
! ANDREW H. VAN TUYL AND ALFRED H. MORRIS, JR.
! NAVAL SURFACE WARFARE CENTER
! OCTOBER, 1991
! A MODIFICATION OF THE PROCEDURE DEVELOPED BY ALLEN V. HERSHEY
! (NAVAL SURFACE WARFARE CENTER) IN 1978 FOR HANDLING THE DEBYE
! APPROXIMATION IS EMPLOYED.
!-----------------------------------------------------------------------
COMPLEX (dp), INTENT(IN) :: z
COMPLEX (dp), INTENT(IN) :: cnu
COMPLEX (dp), INTENT(OUT) :: w
COMPLEX (dp) :: c, nu, s, sm1, sm2, t, tsc, w0, w1, zn, zz
!-----------------------
REAL (dp) :: a, cn1, cn2, e, fn
REAL (dp) :: pn, qm, qn, qnp1
REAL (dp) :: r, rn2, r2, sn, t1, t2
REAL (dp) :: u, v, x, y
INTEGER :: i, k, m, n
REAL (dp), PARAMETER :: pi = 3.141592653589793238462643383279502884197_dp
!-----------------------
x = REAL(z, KIND=dp)
y = AIMAG(z)
r = cpabs(x,y)
cn1 = REAL(cnu, KIND=dp)
cn2 = AIMAG(cnu)
rn2 = cn1 * cn1 + cn2 * cn2
pn = INT(cn1)
fn = cn1 - pn
sn = 1.0_dp
! CALCULATION WHEN ORDER IS AN INTEGER
IF (fn == 0.0_dp .AND. cn2 == 0.0_dp) THEN
n = pn
pn = ABS(pn)
cn1 = pn
IF (n < 0 .AND. n /= (n/2)*2) sn = -1.0_dp
END IF
! SELECTION OF METHOD
IF (r > 17.5D0) THEN
IF (r > 17.5D0 + 0.5D0*rn2) GO TO 10
GO TO 20
END IF
! USE MACLAURIN EXPANSION AND RECURSION
IF (cn1 < 0.0D0) THEN
qn = -1.25D0 * (r + 0.5D0*ABS(cn2) - ABS(y-0.5D0*cn2))
IF (cn1 < qn) THEN
qn = 1.25D0 * (r - MAX(1.2D0*r,ABS(y-cn2)))
IF (cn1 < qn) THEN
qn = MIN(pn, REAL(-INT(1.25D0*(r-ABS(cn2))), KIND=dp))
GO TO 60
END IF
END IF
END IF
r2 = r * r
qm = 0.0625D0 * r2 * r2 - cn2 * cn2
qn = MAX(pn, REAL(INT(SQRT(MAX(0.0D0,qm))), KIND=dp))
GO TO 60
! USE ASYMPTOTIC EXPANSION
10 CALL cbja(z,cnu,w)
RETURN
! CALCULATION FOR 17.5 < ABS(Z) <= 17.5 + 0.5*ABS(CNU)**2
20 n = 0
IF (ABS(cn2) < 0.8D0*ABS(y)) THEN
qm = -1.25D0 * (r + 0.5D0*ABS(cn2) - ABS(y-0.5D0*cn2))
IF (cn1 < qm) THEN
qm = 1.25D0 * (r - MAX(1.2D0*r, ABS(y-cn2)))
IF (cn1 < qm) n = 1
END IF
END IF
qn = pn
a = 4.d-3 * r * r
zz = z
IF (x < 0.0D0) zz = -z
! CALCULATION OF ZONE OF EXCLUSION OF DEBYE APPROXIMATION
30 nu = CMPLX(qn+fn,cn2, KIND=dp)
zn = nu / z
t2 = AIMAG(zn) * AIMAG(zn)
u = 1.0D0 - REAL(zn, KIND=dp)
t1 = u * u + t2
u = 1.0D0 + DBLE(zn)
t2 = u * u + t2
u = t1 * t2
v = a * u / (t1*t1 + t2*t2)
IF (u*v*v <= 1.0D0) THEN
! THE ARGUMENT LIES INSIDE THE ZONE OF EXCLUSION
qn = qn + 1.0D0
IF (n == 0) GO TO 30
! USE MACLAURIN EXPANSION WITH FORWARD RECURRENCE
qn = MIN(pn, REAL(-INT(1.25D0*(r-ABS(cn2))), KIND=dp))
ELSE
! USE BACKWARD RECURRENCE STARTING FROM THE ASYMPTOTIC EXPANSION
qnp1 = qn + 1.0D0
IF (ABS(qn) < ABS(pn)) THEN
IF (r >= 17.5D0 + 0.5D0*(qnp1*qnp1 + cn2*cn2)) THEN
nu = CMPLX(qn+fn,cn2, KIND=dp)
CALL cbja(zz,nu,sm1)
nu = CMPLX(qnp1+fn,cn2, KIND=dp)
CALL cbja(zz,nu,sm2)
GO TO 40
END IF
END IF
! USE BACKWARD RECURRENCE STARTING FROM THE DEBYE APPROXIMATION
nu = CMPLX(qn+fn,cn2, KIND=dp)
CALL cbdb(zz,nu,fn,sm1)
IF (qn == pn) GO TO 50
nu = CMPLX(qnp1+fn,cn2, KIND=dp)
CALL cbdb(zz,nu,fn,sm2)
40 nu = CMPLX(qn+fn,cn2, KIND=dp)
tsc = 2.0D0 * nu * sm1 / zz - sm2
sm2 = sm1
sm1 = tsc
qn = qn - 1.0D0
IF (qn /= pn) GO TO 40
50 w = sm1
IF (sn < 0.0D0) w = -w
IF (x >= 0.0D0) RETURN
nu = pi * CMPLX(-cn2,cn1, KIND=dp)
IF (y < 0.0D0) nu = -nu
w = EXP(nu) * w
RETURN
END IF
! USE MACLAURIN EXPANSION WITH FORWARD OR BACKWARD RECURRENCE.
60 m = qn - pn
IF (ABS(m) <= 1) THEN
nu = CMPLX(cn1,cn2, KIND=dp)
CALL cbjm(z,nu,w)
ELSE
nu = CMPLX(qn+fn,cn2, KIND=dp)
CALL cbjm(z,nu,w1)
w0 = 0.25D0 * z * z
IF (m <= 0) THEN
! FORWARD RECURRENCE
m = ABS(m)
nu = nu + 1.0D0
CALL cbjm(z,nu,w)
DO i = 2, m
c = nu * (nu+1.0D0)
t = (c/w0) * (w-w1)
w1 = w
w = t
nu = nu + 1.0D0
END DO
ELSE
! BACKWARD RECURRENCE
nu = nu - 1.0D0
CALL cbjm(z,nu,w)
DO i = 2, m
c = nu * (nu+1.0D0)
t = (w0/c) * w1
w1 = w
w = w - t
nu = nu - 1.0D0
END DO
END IF
END IF
! FINAL ASSEMBLY
IF (fn == 0.0D0 .AND. cn2 == 0.0D0) THEN
k = pn
IF (k == 0) RETURN
e = sn / dgamma(pn+1.0D0)
w = e * w * (0.5D0*z) ** k
RETURN
END IF
s = cnu * LOG(0.5D0*z)
w = EXP(s) * w
IF (rn2 <= 0.81D0) THEN
w = w * cgam0(cnu)
RETURN
END IF
CALL dcgama(0,cnu,t)
w = cdiv(w,cnu*t)
RETURN
END SUBROUTINE cbsslj
SUBROUTINE cbjm(z,cnu,w)
!-----------------------------------------------------------------------
! COMPUTATION OF (Z/2)**(-CNU) * GAMMA(CNU + 1) * J(CNU,Z)
! -----------------
! THE MACLAURIN EXPANSION IS USED. IT IS ASSUMED THAT CNU IS NOT
! A NEGATIVE INTEGER.
!-----------------------------------------------------------------------
COMPLEX (dp), INTENT(IN) :: z
COMPLEX (dp), INTENT(IN) :: cnu
COMPLEX (dp), INTENT(OUT) :: w
COMPLEX (dp) :: nu, nup1, p, s, sn, t, ti
!--------------------------
REAL (dp) :: a, a0, eps, inu, m, rnu
INTEGER :: i, imin, k, km1, km2
!--------------------------
! ****** EPS IS A MACHINE DEPENDENT CONSTANT. EPS IS THE
! SMALLEST NUMBER SUCH THAT 1.0 + EPS .GT. 1.0 .
eps = EPSILON(0.0_dp)
!--------------------------
s = -0.25D0 * (z*z)
nu = cnu
rnu = REAL(nu, KIND=dp)
inu = AIMAG(nu)
a = 0.5D0 + (0.5D0+rnu)
nup1 = CMPLX(a,inu, KIND=dp)
IF (a > 0.0D0) THEN
m = 1.0D0
t = s / nup1
w = 1.0D0 + t
ELSE
! ADD 1.0 AND THE FIRST K-1 TERMS
k = INT(-a) + 2
km1 = k - 1
w = (1.0D0,0.0D0)
t = w
DO i = 1, km1
m = i
t = t * (s/(m*(nu+m)))
w = w + t
IF (anorm(t) <= eps*anorm(w)) GO TO 20
END DO
GO TO 50
! CHECK IF THE (K-1)-ST AND K-TH TERMS CAN BE IGNORED.
! IF SO THEN THE SUMMATION IS COMPLETE.
20 IF (i /= km1) THEN
imin = i + 1
IF (imin < k-5) THEN
ti = t
m = km1
t = s / (nu+m)
a0 = anorm(t) / m
t = t * (s/(nu+(m+1.0D0)))
a = anorm(t) / (m*(m+1.0D0))
a = MAX(a,a0)
t = (1.0D0,0.0D0)
km2 = k - 2
DO i = imin, km2
m = i
t = t * (s/(m*(nu+m)))
IF (a*anorm(t) < 0.5D0) RETURN
END DO
t = t * ti
imin = km2
END IF
! ADD THE (K-1)-ST TERM
a = 1.0D0
p = (1.0D0,0.0D0)
sn = p
DO i = imin, km1
m = i
a = a * m
p = p * (nu+m)
sn = s * sn
END DO
t = t * (cdiv(sn,p)/a)
w = w + t
END IF
END IF
! ADD THE REMAINING TERMS
50 m = m + 1.0D0
t = t * (s/(m*(nu+m)))
w = w + t
IF (anorm(t) > eps*anorm(w)) GO TO 50
RETURN
END SUBROUTINE cbjm
SUBROUTINE cbdb(cz,cnu,fn,w)
!-----------------------------------------------------------------------
! CALCULATION OF J (CZ) BY THE DEBYE APPROXIMATION
! CNU
! ------------------
! IT IS ASSUMED THAT REAL(CZ) .GE. 0 AND THAT REAL(CNU) = FN + K
! WHERE K IS AN INTEGER.
!-----------------------------------------------------------------------
COMPLEX (dp), INTENT(IN) :: cz, cnu
REAL (dp), INTENT(IN) :: fn
COMPLEX (dp), INTENT(OUT) :: w
! Local variables
REAL (dp) :: is, inu, izn
COMPLEX (dp) :: c1, c2, eta, nu, p, p1, q, r, s, s1, s2, sm, t, z, zn
!----------------------
! C = 1/SQRT(2*PI)
! BND = PI/3
!----------------------
REAL (dp), PARAMETER :: c = .398942280401433_dp, pi = 3.14159265358979_dp, &
pi2 = 6.28318530717959_dp, bnd = 1.04719755119660_dp
COMPLEX (dp), PARAMETER :: j = (0.0, 1.0)
REAL (dp) :: alpha, am, aq, ar
REAL (dp) :: phi, sgn, theta
REAL (dp) :: u, v, x, y
INTEGER :: ind, k, l, m
!----------------------
! COEFFICIENTS OF THE FIRST 16 POLYNOMIALS
! IN THE DEBYE APPROXIMATION
!----------------------
REAL (dp) :: a(136) = (/ 1.0_dp, -.208333333333333_dp, .125000000000000_dp, .334201388888889_dp, &
-.401041666666667_dp, .703125000000000D-01,-.102581259645062D+01, .184646267361111D+01, &
-.891210937500000_dp, .732421875000000D-01, .466958442342625D+01,-.112070026162230D+02, &
.878912353515625D+01,-.236408691406250D+01, .112152099609375_dp,-.282120725582002D+02, &
.846362176746007D+02,-.918182415432400D+02, .425349987453885D+02,-.736879435947963D+01, &
.227108001708984_dp, .212570130039217D+03,-.765252468141182D+03, .105999045252800D+04, &
-.699579627376133D+03, .218190511744212D+03,-.264914304869516D+02, .572501420974731_dp, &
-.191945766231841D+04, .806172218173731D+04,-.135865500064341D+05, .116553933368645D+05, &
-.530564697861340D+04, .120090291321635D+04,-.108090919788395D+03, .172772750258446D+01, &
.202042913309661D+05,-.969805983886375D+05, .192547001232532D+06,-.203400177280416D+06, &
.122200464983017D+06,-.411926549688976D+05, .710951430248936D+04,-.493915304773088D+03, &
.607404200127348D+01,-.242919187900551D+06, .131176361466298D+07,-.299801591853811D+07, &
.376327129765640D+07,-.281356322658653D+07, .126836527332162D+07,-.331645172484564D+06, &
.452187689813627D+05,-.249983048181121D+04, .243805296995561D+02, .328446985307204D+07, &
-.197068191184322D+08, .509526024926646D+08,-.741051482115327D+08, .663445122747290D+08, &
-.375671766607634D+08, .132887671664218D+08,-.278561812808645D+07, .308186404612662D+06, &
-.138860897537170D+05, .110017140269247D+03,-.493292536645100D+08, .325573074185766D+09, &
-.939462359681578D+09, .155359689957058D+10,-.162108055210834D+10, .110684281682301D+10, &
-.495889784275030D+09, .142062907797533D+09,-.244740627257387D+08, .224376817792245D+07, &
-.840054336030241D+05, .551335896122021D+03, .814789096118312D+09,-.586648149205185D+10, &
.186882075092958D+11,-.346320433881588D+11, .412801855797540D+11,-.330265997498007D+11, &
.179542137311556D+11,-.656329379261928D+10, .155927986487926D+10,-.225105661889415D+09, &
.173951075539782D+08,-.549842327572289D+06, .303809051092238D+04,-.146792612476956D+11, &
.114498237732026D+12,-.399096175224466D+12, .819218669548577D+12,-.109837515608122D+13, &
.100815810686538D+13,-.645364869245377D+12, .287900649906151D+12,-.878670721780233D+11, &
.176347306068350D+11,-.216716498322380D+10, .143157876718889D+09,-.387183344257261D+07, &
.182577554742932D+05, .286464035717679D+12,-.240629790002850D+13, .910934118523990D+13, &
-.205168994109344D+14, .305651255199353D+14,-.316670885847852D+14, .233483640445818D+14, &
-.123204913055983D+14, .461272578084913D+13,-.119655288019618D+13, .205914503232410D+12, &
-.218229277575292D+11, .124700929351271D+10,-.291883881222208D+08, .118838426256783D+06, &
-.601972341723401D+13, .541775107551060D+14,-.221349638702525D+15, .542739664987660D+15, &
-.889496939881026D+15, .102695519608276D+16,-.857461032982895D+15, .523054882578445D+15, &
-.232604831188940D+15, .743731229086791D+14,-.166348247248925D+14, .248500092803409D+13, &
-.229619372968246D+12, .114657548994482D+11,-.234557963522252D+09, .832859304016289D+06 /)
z = cz
nu = cnu
inu = AIMAG(cnu)
IF (inu < 0.0D0) THEN
z = CONJG(z)
nu = CONJG(nu)
END IF
x = REAL(z, KIND=dp)
y = AIMAG(z)
! TANH(GAMMA) = SQRT(1 - (Z/NU)**2) = W/NU
! T = EXP(NU*(TANH(GAMMA) - GAMMA))
zn = z / nu
izn = AIMAG(zn)
IF (ABS(izn) <= 0.1D0*ABS(REAL(zn, KIND=dp))) THEN
s = (1.0D0-zn) * (1.0D0+zn)
eta = 1.0D0 / s
q = SQRT(s)
s = 1.0D0 / (nu*q)
t = zn / (1.0D0 + q)
t = EXP(nu*(q + LOG(t)))
ELSE
s = (nu-z) * (nu+z)
eta = (nu*nu) / s
w = SQRT(s)
q = w / nu
IF (REAL(q, KIND=dp) < 0.0D0) w = -w
s = 1.0D0 / w
t = z / (nu+w)
t = EXP(w + nu*LOG(t))
END IF
is = AIMAG(s)
r = SQRT(s)
c1 = r * t
ar = REAL(r, KIND=dp) * REAL(r, KIND=dp) + AIMAG(r) * AIMAG(r)
aq = -1.0D0 / (REAL(q, KIND=dp)*REAL(q, KIND=dp) + AIMAG(q)*AIMAG(q))
phi = ATAN2(y,x) / 3.0D0
q = nu - z
theta = ATAN2(AIMAG(q),REAL(q, KIND=dp)) - phi
ind = 0
IF (ABS(theta) >= 2.0D0*bnd) THEN
ind = 1
CALL dcrec(REAL(t, KIND=dp), AIMAG(t),u,v)
c2 = -j * r * CMPLX(u,v, KIND=dp)
IF (is >= 0.0D0) THEN
IF (is > 0.0D0) GO TO 10
IF (REAL(s, KIND=dp) <= 0.0D0) GO TO 10
END IF
c2 = -c2
END IF
! SUMMATION OF THE SERIES S1 AND S2
10 sm = s * s
p = (a(2)*eta + a(3)) * s
p1 = ((a(4)*eta + a(5))*eta + a(6)) * sm
s1 = (1.0D0 + p) + p1
IF (ind /= 0) s2 = (1.0D0-p) + p1
sgn = 1.0D0
am = ar * ar
m = 4
l = 6
! P = VALUE OF THE M-TH POLYNOMIAL
20 l = l + 1
alpha = a(l)
p = CMPLX(a(l),0.0D0, KIND=dp)
DO k = 2, m
l = l + 1
alpha = a(l) + aq * alpha
p = a(l) + eta * p
END DO
! ONLY THE S1 SUM IS FORMED WHEN IND = 0
sm = s * sm
p = p * sm
s1 = s1 + p
IF (ind /= 0) THEN
sgn = -sgn
s2 = s2 + sgn * p
END IF
am = ar * am
IF (1.0D0 + alpha*am /= 1.0D0) THEN
m = m + 1
IF (m <= 16) GO TO 20
END IF
! FINAL ASSEMBLY
s1 = c * c1 * s1
IF (ind == 0) THEN
w = s1
ELSE
s2 = c * c2 * s2
q = nu + z
theta = ATAN2(AIMAG(q),REAL(q, KIND=dp)) - phi
IF (ABS(theta) <= bnd) THEN
w = s1 + s2
ELSE
alpha = pi2
IF (izn < 0.0D0) alpha = -alpha
t = alpha * CMPLX(ABS(inu),-fn, KIND=dp)
alpha = EXP(REAL(t))
u = AIMAG(t)
r = CMPLX(COS(u),SIN(u), KIND=dp)
t = s1 - (alpha*r) * s1
IF (x == 0.0D0 .AND. inu == 0.0D0) t = -t
IF (y < 0.0D0) THEN
IF (izn >= 0.0D0 .AND. theta <= SIGN(pi,theta)) s2 = &
s2 * ( CONJG(r)/alpha)
IF (x == 0.0D0) GO TO 40
IF (izn >= 0.0D0) THEN
IF (is < 0.0D0) GO TO 40
END IF
END IF
w = s2 + t
GO TO 50
40 w = s2 - t
END IF
END IF
50 IF (inu < 0.0D0) w = CONJG(w)
RETURN
END SUBROUTINE cbdb
SUBROUTINE cbja(cz,cnu,w)
!-----------------------------------------------------------------------
! COMPUTATION OF J(NU,Z) BY THE ASYMPTOTIC EXPANSION
!-----------------------------------------------------------------------
COMPLEX (dp), INTENT(IN) :: cz
COMPLEX (dp), INTENT(IN) :: cnu
COMPLEX (dp), INTENT(OUT) :: w
! Local variables
REAL (dp) :: eps, inu, m
COMPLEX (dp) :: a, a1, arg, e, eta, nu, p, q, t, z, zr, zz
!--------------------------
REAL (dp) :: r, rnu, tol, u, v
REAL (dp) :: x, y
INTEGER :: i, ind
!--------------------------
! PIHALF = PI/2
! C = 2*PI**(-1/2)
!--------------------------
REAL (dp), PARAMETER :: pihalf = 1.5707963267949_dp, c = 1.12837916709551_dp
COMPLEX (dp), PARAMETER :: j = (0.0_dp, 1.0_dp)
!--------------------------
! ****** EPS IS A MACHINE DEPENDENT CONSTANT. EPS IS THE
! SMALLEST NUMBER SUCH THAT 1.0 + EPS .GT. 1.0 .
eps = EPSILON(0.0_dp)
!--------------------------
z = cz
x = REAL(z, KIND=dp)
y = AIMAG(z)
nu = cnu
ind = 0
IF (ABS(x) <= 1.d-2*ABS(y)) THEN
IF (AIMAG(nu) < 0.0D0 .AND. ABS(REAL(nu)) < 1.d-2*ABS(AIMAG(nu))) THEN
ind = 1
nu = CONJG(nu)
z = CONJG(z)
y = -y
END IF
END IF
IF (x < -1.d-2*y) z = -z
zz = z + z
CALL dcrec(REAL(zz, KIND=dp),AIMAG(zz),u,v)
zr = CMPLX(u,v, KIND=dp)
eta = -zr * zr
p = (0.0D0,0.0D0)
q = (0.0D0,0.0D0)
a1 = nu * nu - 0.25D0
a = a1
t = a1
m = 1.0D0
tol = eps * anorm(a1)
DO i = 1, 16
a = a - 2.0D0 * m
m = m + 1.0D0
t = t * a * eta / m
p = p + t
a = a - 2.0D0 * m
m = m + 1.0D0
t = t * a / m
q = q + t
IF (anorm(t) <= tol) GO TO 20
END DO
20 p = p + 1.0D0
q = (q+a1) * zr
w = z - pihalf * nu
IF (ABS(AIMAG(w)) <= 1.0D0) THEN
arg = w - 0.5D0 * pihalf
w = c * SQRT(zr) * (p*COS(arg) - q*SIN(arg))
ELSE
e = EXP(-j*w)
t = q - j * p
IF (AIMAG(z) > 0.0D0 .AND. REAL(z, KIND=dp) <= 1.d-2*AIMAG(z).AND. &
ABS(REAL(nu, KIND=dp)) < 1.d-2*AIMAG(nu)) t = 0.5D0 * t
CALL dcrec(REAL(e, KIND=dp),AIMAG(e),u,v)
w = 0.5D0 * c * SQRT(j*zr) * ((p-j*q)*e + t*CMPLX(u,v, KIND=dp))
END IF
IF (x < -1.d-2*y) THEN
IF (y < 0.0D0) nu = -nu
! COMPUTATION OF EXP(I*PI*NU)
rnu = REAL(nu, KIND=dp)
inu = AIMAG(nu)
r = EXP(-2.0D0*pihalf*inu)
u = r * dcos1(rnu)
v = r * dsin1(rnu)
w = w * CMPLX(u,v, KIND=dp)
END IF
IF (ind /= 0) w = CONJG(w)
RETURN
END SUBROUTINE cbja
FUNCTION anorm(z) RESULT(fn_val)
! Replaces the statement function anorm in the F77 code.
COMPLEX (dp), INTENT(IN) :: z
REAL (dp) :: fn_val
fn_val = MAX( ABS( REAL(z, KIND=dp)), ABS(AIMAG(z) ) )
RETURN
END FUNCTION anorm
FUNCTION dgam1(x) RESULT(fn_val)
!-----------------------------------------------------------------------
! EVALUATION OF 1/GAMMA(1 + X) - 1 FOR -0.5 <= X <= 1.5
!-----------------------------------------------------------------------
! THE FOLLOWING ARE THE FIRST 49 COEFFICIENTS OF THE MACLAURIN
! EXPANSION FOR 1/GAMMA(1 + X) - 1. THE COEFFICIENTS ARE
! CORRECT TO 40 DIGITS. THE COEFFICIENTS WERE OBTAINED BY
! ALFRED H. MORRIS JR. (NAVAL SURFACE WARFARE CENTER) AND ARE
! GIVEN HERE FOR REFERENCE. ONLY THE FIRST 14 COEFFICIENTS ARE
! USED IN THIS CODE.
! -----------
! DATA A(1) / .5772156649015328606065120900824024310422D+00/,
! * A(2) /-.6558780715202538810770195151453904812798D+00/,
! * A(3) /-.4200263503409523552900393487542981871139D-01/,
! * A(4) / .1665386113822914895017007951021052357178D+00/,
! * A(5) /-.4219773455554433674820830128918739130165D-01/,
! * A(6) /-.9621971527876973562114921672348198975363D-02/,
! * A(7) / .7218943246663099542395010340446572709905D-02/,
! * A(8) /-.1165167591859065112113971084018388666809D-02/,
! * A(9) /-.2152416741149509728157299630536478064782D-03/,
! * A(10) / .1280502823881161861531986263281643233949D-03/
! DATA A(11) /-.2013485478078823865568939142102181838229D-04/,
! * A(12) /-.1250493482142670657345359473833092242323D-05/,
! * A(13) / .1133027231981695882374129620330744943324D-05/,
! * A(14) /-.2056338416977607103450154130020572836513D-06/,
! * A(15) / .6116095104481415817862498682855342867276D-08/,
! * A(16) / .5002007644469222930055665048059991303045D-08/,
! * A(17) /-.1181274570487020144588126565436505577739D-08/,
! * A(18) / .1043426711691100510491540332312250191401D-09/,
! * A(19) / .7782263439905071254049937311360777226068D-11/,
! * A(20) /-.3696805618642205708187815878085766236571D-11/
! DATA A(21) / .5100370287454475979015481322863231802727D-12/,
! * A(22) /-.2058326053566506783222429544855237419746D-13/,
! * A(23) /-.5348122539423017982370017318727939948990D-14/,
! * A(24) / .1226778628238260790158893846622422428165D-14/,
! * A(25) /-.1181259301697458769513764586842297831212D-15/,
! * A(26) / .1186692254751600332579777242928674071088D-17/,
! * A(27) / .1412380655318031781555803947566709037086D-17/,
! * A(28) /-.2298745684435370206592478580633699260285D-18/,
! * A(29) / .1714406321927337433383963370267257066813D-19/,
! * A(30) / .1337351730493693114864781395122268022875D-21/
! DATA A(31) /-.2054233551766672789325025351355733796682D-21/,
! * A(32) / .2736030048607999844831509904330982014865D-22/,
! * A(33) /-.1732356445910516639057428451564779799070D-23/,
! * A(34) /-.2360619024499287287343450735427531007926D-25/,
! * A(35) / .1864982941717294430718413161878666898946D-25/,
! * A(36) /-.2218095624207197204399716913626860379732D-26/,
! * A(37) / .1297781974947993668824414486330594165619D-27/,
! * A(38) / .1180697474966528406222745415509971518560D-29/,
! * A(39) /-.1124584349277088090293654674261439512119D-29/,
! * A(40) / .1277085175140866203990206677751124647749D-30/
! DATA A(41) /-.7391451169615140823461289330108552823711D-32/,
! * A(42) / .1134750257554215760954165259469306393009D-34/,
! * A(43) / .4639134641058722029944804907952228463058D-34/,
! * A(44) /-.5347336818439198875077418196709893320905D-35/,
! * A(45) / .3207995923613352622861237279082794391090D-36/,
! * A(46) /-.4445829736550756882101590352124643637401D-38/,
! * A(47) /-.1311174518881988712901058494389922190237D-38/,
! * A(48) / .1647033352543813886818259327906394145400D-39/,
! * A(49) /-.1056233178503581218600561071538285049997D-40/
! -----------
! C = A(1) - 1 IS ALSO FREQUENTLY NEEDED. C HAS THE VALUE ...
! DATA C /-.4227843350984671393934879099175975689578D+00/
!-----------------------------------------------------------------------
REAL (dp), INTENT(IN) :: x
REAL (dp) :: fn_val
! Local variables
REAL (dp) :: d, t, w, z
REAL (dp), PARAMETER :: a0 = .611609510448141581788D-08, a1 &
= .624730830116465516210D-08, b1 = .203610414066806987300D+00, b2 &
= .266205348428949217746D-01, b3 = .493944979382446875238D-03, b4 &
= -.851419432440314906588D-05, b5 = -.643045481779353022248D-05, b6 &
= .992641840672773722196D-06, b7 = -.607761895722825260739D-07, b8 &
= .195755836614639731882D-09
REAL (dp), PARAMETER :: p0 = .6116095104481415817861D-08, p1 &
= .6871674113067198736152D-08, p2 = .6820161668496170657, p3 &
= .4686843322948848031080D-10, p4 = .1572833027710446286995D-11, p5 &
= -.1249441572276366213222D-12, p6 = .4343529937408594255178D-14, q1 &
= .3056961078365221025009D+00, q2 = .5464213086042296536016D-01, q3 &
= .4956830093825887312, q4 = .2692369466186361192876D-03
REAL (dp), PARAMETER :: c = -.422784335098467139393487909917598D+00, c0 &
= .577215664901532860606512090082402D+00, c1 &
= -.655878071520253881077019515145390D+00, c2 &
= -.420026350340952355290039348754298D-01, c3 &
= .166538611382291489501700795102105D+00, c4 &
= -.421977345555443367482083012891874D-01, c5 &
= -.962197152787697356211492167234820D-02, c6 &
= .721894324666309954239501034044657D-02, c7 &
= -.116516759185906511211397108401839D-02, c8 &
= -.215241674114950972815729963053648D-03, c9 &
= .128050282388116186153198626328164D-03, c10 &
= -.201348547807882386556893914210218D-04, c11 &
= -.125049348214267065734535947383309D-05, c12 &
= .113302723198169588237412962033074D-05, c13 &
= -.205633841697760710345015413002057D-06
!----------------------------
t = x
d = x - 0.5_dp
IF (d > 0._dp) t = d - 0.5_dp
IF (t < 0.0_dp) THEN
GO TO 30
ELSE IF (t > 0.0_dp) THEN
GO TO 20
END IF
fn_val = 0._dp
RETURN
!------------
! CASE WHEN 0 < T <= 0.5
! W IS A MINIMAX APPROXIMATION FOR
! THE SERIES A(15) + A(16)*T + ...
!------------
20 w = ((((((p6*t + p5)*t + p4)*t + p3)*t + p2)*t + p1)*t + p0) / &
((((q4*t+q3)*t + q2)*t + q1)*t + 1._dp)
z = (((((((((((((w*t + c13)*t + c12)*t + c11)*t + c10)*t + c9)*t + c8)*t + c7)*t &
+ c6)*t + c5)*t + c4)*t + c3)*t + c2)*t + c1) * t + c0
IF (d <= 0._dp) THEN
fn_val = x * z
RETURN
END IF
fn_val = (t/x) * ((z-0.5_dp)-0.5_dp)
RETURN
!------------
! CASE WHEN -0.5 <= T < 0
! W IS A MINIMAX APPROXIMATION FOR
! THE SERIES A(15) + A(16)*T + ...
!------------
30 w = (a1*t + a0) / ((((((((b8*t + b7)*t + b6)*t + b5)*t + b4)*t + b3)*t + b2)*t + b1)*t+1._dp)
z = (((((((((((((w*t + c13)*t + c12)*t + c11)*t + c10)*t + c9)*t + c8)*t + c7)*t &
+ c6)*t + c5)*t + c4)*t + c3)*t + c2)*t + c1) * t + c
IF (d <= 0._dp) THEN
fn_val = x * ((z+0.5_dp)+0.5_dp)
RETURN
END IF
fn_val = t * z / x
RETURN
END FUNCTION dgam1
FUNCTION dpdel(x) RESULT(fn_val)
!-----------------------------------------------------------------------
! COMPUTATION OF THE FUNCTION DEL(X) FOR X >= 10 WHERE
! LN(GAMMA(X)) = (X - 0.5)*LN(X) - X + 0.5*LN(2*PI) + DEL(X)
! --------
! THE SERIES FOR DPDEL ON THE INTERVAL 0.0 TO 1.0 DERIVED BY
! A.H. MORRIS FROM THE CHEBYSHEV SERIES IN THE SLATEC LIBRARY
! OBTAINED BY WAYNE FULLERTON (LOS ALAMOS).
!-----------------------------------------------------------------------
REAL (dp), INTENT(IN) :: x
REAL (dp) :: fn_val
! Local variables
REAL (dp), PARAMETER :: a(15) = (/ .833333333333333333333333333333D-01, &
-.277777777777777777777777752282D-04, &
.793650793650793650791732130419D-07, &
-.595238095238095232389839236182D-09, &
.841750841750832853294451671990D-11, &
-.191752691751854612334149171243D-12, &
.641025640510325475730918472625D-14, &
-.295506514125338232839867823991D-15, &
.179643716359402238723287696452D-16, &
-.139228964661627791231203060395D-17, &
.133802855014020915603275339093D-18, &
-.154246009867966094273710216533D-19, &
.197701992980957427278370133333D-20, &
-.234065664793997056856992426667D-21, &
.171348014966398575409015466667D-22 /)
REAL (dp) :: t, w
INTEGER :: i, k
!-----------------------------------------------------------------------
t = (10._dp/x) ** 2
w = a(15)
DO i = 1, 14
k = 15 - i
w = t * w + a(k)
END DO
fn_val = w / x
RETURN
END FUNCTION dpdel
END MODULE Complex_Bessel
风平老涡 发表于 2021-2-9 00:05
[mw_shl_code=fortran,true]SUBROUTINE cbsslj(z,cnu,w)
!---------------------------------------------- ...
jlg1206 发表于 2021-4-8 19:16
好久没登陆了,非常感谢您的帮助。但是我运行了一下您提供的这个程序,编译的时候还是出现很多比如变量未 ...
欢迎光临 Fortran Coder (http://bbs.fcode.cn/) | Powered by Discuz! X3.2 |