|  | 
 
| 本帖最后由 风平老涡 于 2020-8-29 06:48 编辑 
 如今的数值计算可供选择的方法有很多,一般的计算Python足以应付。而在高性能计算中,为了缩短计算时间及提高效率,通常采用并行计算,这是Fortran的强项。在Fortran并行计算时可有多种并行技术供选择,比如共享内存的OpenMP,分布式的MPI, 以及Fortran语言标准的Coarrays。
 
 OpenMP通常用于单节点多线程进程(多线程并行),其特点是多线程进程可随时产生或合并(Fork & Merge),并且所产生的多线程进程可共享同一内存的变量(Shared Memory),避免了数据传输。OpenMP使用相对容易,只要在原先的单进程程序上,对所需并行部分语句加上OpenMP特有的注释行及少许改动即可。
 
 MPI通常用于多节点分布型多进程进程(多进程并行),主要用于超算(Supercomputer)。其特点是多进程进程不可随时产生或合并,每个进程拥有本地内存(Local Memory)及变量。不同进程间不共享变量,进程间变量交换需通过数据传输。MPI应用是基于对通讯库的访问来实现,使用相对困难,其构架与原先的单进程程序上可能完全不一样。
 
 Coarrays是Fortran2008语言标准,是属于一种叫PGAS(Partitioned Global Address Space)并行编程模型,可用于多节点多核多线程的单一程序多数据(Single Program Multiple Data, SPMD)类并行编程。由于Coarrays是语言标准的一部分,避免了用户直接使用类似MPI对通讯库的访问,简化了进程间变量交换的编程。 并且语言标准提供了内在的同步功能(Synchronization),使竞态(Race Condition, RC)和死锁(Deadlock)得以避免。
 
 
 计算\pi有很多种方法,这里通过对Gregory-Leibniz级数\pi = 4 \sum_{n=1}^{\infty}\frac{(-1)^{(n-1)}}{2n-1}计算来比较几种不同的并行技术。
 
 
 使用的软硬件如下:Intel i7-4710HQ CPU @ 2.50GHz(4核), GNU Gfortran V10.1.0, OpenMP V4.5.0, OpenMPI V4.0.4, Opencoarray V2.9.0
 
 
 一  OpenMP法
 
 [Fortran] syntaxhighlighter_viewsource syntaxhighlighter_copycode program omp_parallel
  use omp_lib
  implicit none
  integer, parameter :: rk = 8
  integer :: n_threads, i, n_limit, c1, c2, c_rate
  real(kind=rk) :: pi
  print *, "n_limit="
  read(*,*)  n_limit
  print *, 'num_threads='
  read(*,*) n_threads
  pi = 0.0
  call system_clock(c1, c_rate)  
!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(i) NUM_THREADS(n_threads) REDUCTION(+:pi)  
  do i = 1, n_limit
    pi = pi + (-1)**(i+1) / real( 2*i-1, kind=rk )
  end do
!$OMP END PARALLEL DO
  pi = pi * 4.0_rk
  call system_clock(c2, c_rate)
  write(*,*) pi, real(c2-c1)/real(c_rate), n_threads
 
end program omp_parallel
 
 二  MPI法
 
 
 [Fortran] syntaxhighlighter_viewsource syntaxhighlighter_copycode program MPI_parallel
  use mpi
  implicit none
  integer, parameter :: rk = 8
  integer :: i, n_limit, ierr, numprocs, myid, c1, c2, c_rate
  real(kind=rk) :: pi, picalc
  call MPI_INIT(ierr)
  call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
  call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
  if(myid == 0) then
     print *, "n_limit="
     read(*,*) n_limit
  end if
  call MPI_BCAST(n_limit, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
  pi = 0.0
  call system_clock(c1, c_rate)
  do i = myid + 1, n_limit, numprocs
     pi = pi + (-1)**(i+1) / real( 2*i-1, kind=rk )
  end do
  call MPI_REDUCE( pi, picalc, 1, MPI_DOUBLE_PRECISION, &
                 MPI_SUM, 0, MPI_COMM_WORLD, ierr )
  picalc = picalc * 4.0_rk
  call system_clock(c2, c_rate)
  if(myid == 0) then
     write(*,*) picalc, real(c2-c1)/real(c_rate), numprocs
  end if
  call MPI_FINALIZE(ierr)
end program MPI_parallel
 
 三 Coarray法
 
 [Fortran] syntaxhighlighter_viewsource syntaxhighlighter_copycode program coarray_parallel
  implicit none
  integer, parameter :: rk = 8
  integer :: n_images, i, c1, c2, c_rate, n_limit[*]
  real(kind=rk) :: pi[*]
  n_images = num_images()
  if(this_image() == 1) then
     print *, "n_limit="
     read(*,*) n_limit
  end if
  call co_broadcast(n_limit, 1)
  pi = 0.0
  
  call system_clock(c1, c_rate)
  do i = this_image(), n_limit, n_images
     pi = pi + (-1)**(i+1) / real( 2*i-1, kind=rk )
  end do
  
  call co_sum(pi)
  pi = pi * 4.0_rk
  call system_clock(c2, c_rate)
  if(this_image() == 1) then
     write(*,*) pi, real(c2-c1)/real(c_rate), n_images
  end if
  
end program coarray_parallel四 比较
 当N上限取值为2000000000,所需计算时间(秒)如下:
 线程/进程    OpenMP       MPI       Coarrays
 1                   8.27           8.23          8.17
 2                   4.18           4.19          4.17
 4                   2.15           2.15          2.13
 从上列数据可看出,三种方法在性能上差不多。这里使用的Opencoarray库是基于MPI3.0标准。因为Fortran语言标准没有指定采用那一种通讯技术,如MPI,OpenMP,SHMEM,GASnet,ARMCI,DMAPP等,所以对Coarrays的性能影响是多方面的。不管如何,Coarrays的通用性和容易使用是显而易见的。
 
 
 五 总结
 
 OpenMP      MPI        Coarrays
 语言标准       否             否              是
 共享内存       是             是              是
 分布式           否             是              是
 易使用           是             否              是
 可塑性         一般           好              好
 性能             一般           高              高
 
 
 | 
 |