Fortran Coder

查看: 27410|回复: 19
打印 上一主题 下一主题

[求助] 程序跑不起来,有错误地方,指教一下

[复制链接]

13

帖子

2

主题

0

精华

入门

F 币
60 元
贡献
36 点
跳转到指定楼层
楼主
发表于 2020-9-21 20:09:44 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

分享到:  微信微信
收藏收藏 点赞点赞 点踩点踩

4

帖子

0

主题

0

精华

入门

F 币
105 元
贡献
31 点
QQ
沙发
发表于 2020-9-21 20:28:37 | 只看该作者
少写了个 end if 吧

213

帖子

2

主题

0

精华

宗师

F 币
2126 元
贡献
875 点

规矩勋章

板凳
发表于 2020-9-22 06:22:33 | 只看该作者
本帖最后由 风平老涡 于 2020-9-22 07:30 编辑

只有屏幕截图,没法帮你看程序。

13

帖子

2

主题

0

精华

入门

F 币
60 元
贡献
36 点
地板
 楼主| 发表于 2020-9-22 08:34:44 | 只看该作者

但是不知道在哪个位置补充了?

13

帖子

2

主题

0

精华

入门

F 币
60 元
贡献
36 点
5#
 楼主| 发表于 2020-9-22 10:18:21 | 只看该作者
风平老涡 发表于 2020-9-22 06:22
只有屏幕截图,没法帮你看程序。

subroutine int_force(itimestep,dt,ntotal,hsml,mass,vx,niac,rho,
     &        eta,pair_i,pair_j,dwdx,u,itype,x,t,c,p,dvxdt,tdsdt,dedt)

c----------------------------------------------------------------------
c   Subroutine to calculate the internal forces on the right hand side
c   of the Navier-Stokes equations, i.e. the pressure gradient and the
c   gradient of the viscous stress tensor, used by the time integration.
c   Moreover the entropy production due to viscous dissipation, tds/dt,
c   and the change of internal energy per mass, de/dt, are calculated.

c     itimestep: Current timestep number                            [in]
c     dt     :   Time step                                          [in]
c     ntotal : Number of particles                                  [in]
c     hsml   : Smoothing Length                                     [in]
c     mass   : Particle masses                                      [in]
c     vx     : Velocities of all particles                          [in]
c     niac   : Number of interaction pairs                          [in]
c     rho    : Density                                              [in]
c     eta    : Dynamic viscosity                                    [in]
c     pair_i : List of first partner of interaction pair            [in]
c     pair_j : List of second partner of interaction pair           [in]
c     dwdx   : Derivative of kernel with respect to x, y and z      [in]
c     itype  : Type of particle (material types)                    [in]
c     u      : Particle internal energy                             [in]
c     x      : Particle coordinates                                 [in]
c     itype  : Particle type                                        [in]
c     t      : Particle temperature                             [in/out]
c     c      : Particle sound speed                                [out]
c     p      : Particle pressure                                   [out]
c     dvxdt  : Acceleration with respect to x, y and z             [out]
c     tdsdt  : Production of viscous entropy                       [out]
c     dedt   : Change of specific internal energy                  [out]

      implicit none
      include 'param.inc'
      
      integer itimestep, ntotal,niac,pair_i(max_interaction),
     &        pair_j(max_interaction), itype(maxn)
      double precision dt, hsml(maxn), mass(maxn), vx(dim,maxn),      
     &       rho(maxn), eta(maxn), dwdx(dim,max_interaction), u(maxn),
     &       x(dim,maxn), t(maxn), c(maxn), p(maxn), dvxdt(dim,maxn),   
     &       tdsdt(maxn),dedt(maxn)
      integer i, j, k, d
      double precision  dvx(dim), txx(maxn), tyy(maxn),
     &       tzz(maxn), txy(maxn), txz(maxn), tyz(maxn), vcc(maxn),
     &       hxx, hyy, hzz, hxy, hxz, hyz, h, hvcc, he, rhoij

c     Initialization of shear tensor, velocity divergence,
c     viscous energy, internal energy, acceleration

      do i=1,ntotal      
        txx(i) = 0.e0
        tyy(i) = 0.e0
        tzz(i) = 0.e0
        txy(i) = 0.e0
        txz(i) = 0.e0
        tyz(i) = 0.e0
        vcc(i) = 0.e0
        tdsdt(i) = 0.e0
        dedt(i) = 0.e0
        do d=1,dim
          dvxdt(d,i) = 0.e0
        enddo
      enddo

c     Calculate SPH sum for shear tensor Tab = va,b + vb,a - 2/3 delta_ab vc,c

      if (visc) then
        do k=1,niac
          i = pair_i(k)
          j = pair_j(k)
          do d=1,dim
            dvx(d) = vx(d,j) - vx(d,i)
          enddo
          if (dim.eq.1) then
            hxx = 2.e0*dvx(1)*dwdx(1,k)        
          else if (dim.eq.2) then           
            hxx = 2.e0*dvx(1)*dwdx(1,k) -  dvx(2)*dwdx(2,k)
            hxy = dvx(1)*dwdx(2,k) + dvx(2)*dwdx(1,k)
            hyy = 2.e0*dvx(2)*dwdx(2,k) - dvx(1)*dwdx(1,k)

          endif                              
          hxx = 2.e0/3.e0*hxx
          hyy = 2.e0/3.e0*hyy
          hzz = 2.e0/3.e0*hzz
          if (dim.eq.1) then
            txx(i) = txx(i) + mass(j)*hxx/rho(j)
            txx(j) = txx(j) + mass(i)*hxx/rho(i)                 
          else if (dim.eq.2) then           
            txx(i) = txx(i) + mass(j)*hxx/rho(j)
            txx(j) = txx(j) + mass(i)*hxx/rho(i)   
            txy(i) = txy(i) + mass(j)*hxy/rho(j)
            txy(j) = txy(j) + mass(i)*hxy/rho(i)            
            tyy(i) = tyy(i) + mass(j)*hyy/rho(j)
            tyy(j) = tyy(j) + mass(i)*hyy/rho(i)         
              
          endif                              

c     Calculate SPH sum for vc,c = dvx/dx + dvy/dy + dvz/dz:

         hvcc = 0.
         do d=1,dim
           hvcc = hvcc + dvx(d)*dwdx(d,k)
         enddo
         vcc(i) = vcc(i) + mass(j)*hvcc/rho(j)
         vcc(j) = vcc(j) + mass(i)*hvcc/rho(i)
        enddo
      endif   

      do i=1,ntotal
      
c     Viscous entropy Tds/dt = 1/2 eta/rho Tab Tab

        if (visc) then
          if (dim.eq.1) then
            tdsdt(i) = txx(i)*txx(i)                             
          else if (dim.eq.2) then           
            tdsdt(i) = txx(i)*txx(i) + 2.e0*txy(i)*txy(i)  
     &                               + tyy(i)*tyy(i)

          endif   
          tdsdt(i) = 0.5e0*eta(i)/rho(i)*tdsdt(i)
        endif  

c     Pressure from equation of state

        if (abs(itype(i)).eq.1) then
          call p_gas(rho(i), u(i), p(i),c(i))  
        else if (abs(itype(i)).eq.2) then             
          call p_art_water(rho(i), p(i), c(i))
        endif  
  
      enddo

c      Calculate SPH sum for pressure force -p,a/rho
c      and viscous force (eta Tab),b/rho
c      and the internal energy change de/dt due to -p/rho vc,c

      do k=1,niac
        i = pair_i(k)
        j = pair_j(k)
        he = 0.e0
        
c     For SPH algorithm 1

        rhoij = 1.e0/(rho(i)*rho(j))        
        if(pa_sph.eq.1) then  
          do d=1,dim
        
c     Pressure part
                    
            h = -(p(i) + p(j))*dwdx(d,k)
            he = he + (vx(d,j) - vx(d,i))*h

c     Viscous force

            if (visc) then
            
             if (d.eq.1) then
            
c     x-coordinate of acceleration

               h = h + (eta(i)*txx(i) + eta(j)*txx(j))*dwdx(1,k)
               if (dim.ge.2) then
                 h = h + (eta(i)*txy(i) + eta(j)*txy(j))*dwdx(2,k)

                 endif
               endif            
             elseif (d.eq.2) then
            
c     y-coordinate of acceleration

               h = h + (eta(i)*txy(i) + eta(j)*txy(j))*dwdx(1,k)
     &               + (eta(i)*tyy(i) + eta(j)*tyy(j))*dwdx(2,k)

               endif            

!          endif            
           h = h*rhoij
           dvxdt(d,i) = dvxdt(d,i) + mass(j)*h
           dvxdt(d,j) = dvxdt(d,j) - mass(i)*h
          enddo
          he = he*rhoij
          dedt(i) = dedt(i) + mass(j)*he
          dedt(j) = dedt(j) + mass(i)*he        
         
c     For SPH algorithm 2
         
c        else if (pa_sph.eq.2) then
c          do d=1,dim               
c            h = -(p(i)/rho(i)**2 + p(j)/rho(j)**2)*dwdx(d,k)
c            he = he + (vx(d,j) - vx(d,i))*h

c     Viscous force

            if (visc) then            
             if (d.eq.1) then
                       
c     x-coordinate of acceleration

               h = h + (eta(i)*txx(i)/rho(i)**2 +
     &                  eta(j)*txx(j)/rho(j)**2)*dwdx(1,k)
               if (dim.ge.2) then
                 h = h + (eta(i)*txy(i)/rho(i)**2 +
     &                    eta(j)*txy(j)/rho(j)**2)*dwdx(2,k)
                 if (dim.eq.3) then
                   h = h + (eta(i)*txz(i)/rho(i)**2 +
     &                      eta(j)*txz(j)/rho(j)**2)*dwdx(3,k)
                 endif
               endif            
             elseif (d.eq.2) then
            
c     y-coordinate of acceleration

               h = h + (eta(i)*txy(i)/rho(i)**2  
     &               +  eta(j)*txy(j)/rho(j)**2)*dwdx(1,k)
     &               + (eta(i)*tyy(i)/rho(i)**2  
     &               +  eta(j)*tyy(j)/rho(j)**2)*dwdx(2,k)

               endif              
         
           endif              
           dvxdt(d,i) = dvxdt(d,i) + mass(j)*h
           dvxdt(d,j) = dvxdt(d,j) - mass(i)*h
c          enddo
          dedt(i) = dedt(i) + mass(j)*he
          dedt(j) = dedt(j) + mass(i)*he      
c        endif        
c      enddo

c     Change of specific internal energy de/dt = T ds/dt - p/rho vc,c:

      do i=1,ntotal
         dedt(i) = tdsdt(i) + 0.5e0*dedt(i)
      enddo

      end

13

帖子

2

主题

0

精华

入门

F 币
60 元
贡献
36 点
6#
 楼主| 发表于 2020-9-22 10:18:58 | 只看该作者
wx_yxZLpy1y 发表于 2020-9-22 08:34
但是不知道在哪个位置补充了?

subroutine int_force(itimestep,dt,ntotal,hsml,mass,vx,niac,rho,
     &        eta,pair_i,pair_j,dwdx,u,itype,x,t,c,p,dvxdt,tdsdt,dedt)

c----------------------------------------------------------------------
c   Subroutine to calculate the internal forces on the right hand side
c   of the Navier-Stokes equations, i.e. the pressure gradient and the
c   gradient of the viscous stress tensor, used by the time integration.
c   Moreover the entropy production due to viscous dissipation, tds/dt,
c   and the change of internal energy per mass, de/dt, are calculated.

c     itimestep: Current timestep number                            [in]
c     dt     :   Time step                                          [in]
c     ntotal : Number of particles                                  [in]
c     hsml   : Smoothing Length                                     [in]
c     mass   : Particle masses                                      [in]
c     vx     : Velocities of all particles                          [in]
c     niac   : Number of interaction pairs                          [in]
c     rho    : Density                                              [in]
c     eta    : Dynamic viscosity                                    [in]
c     pair_i : List of first partner of interaction pair            [in]
c     pair_j : List of second partner of interaction pair           [in]
c     dwdx   : Derivative of kernel with respect to x, y and z      [in]
c     itype  : Type of particle (material types)                    [in]
c     u      : Particle internal energy                             [in]
c     x      : Particle coordinates                                 [in]
c     itype  : Particle type                                        [in]
c     t      : Particle temperature                             [in/out]
c     c      : Particle sound speed                                [out]
c     p      : Particle pressure                                   [out]
c     dvxdt  : Acceleration with respect to x, y and z             [out]
c     tdsdt  : Production of viscous entropy                       [out]
c     dedt   : Change of specific internal energy                  [out]

      implicit none
      include 'param.inc'
      
      integer itimestep, ntotal,niac,pair_i(max_interaction),
     &        pair_j(max_interaction), itype(maxn)
      double precision dt, hsml(maxn), mass(maxn), vx(dim,maxn),      
     &       rho(maxn), eta(maxn), dwdx(dim,max_interaction), u(maxn),
     &       x(dim,maxn), t(maxn), c(maxn), p(maxn), dvxdt(dim,maxn),   
     &       tdsdt(maxn),dedt(maxn)
      integer i, j, k, d
      double precision  dvx(dim), txx(maxn), tyy(maxn),
     &       tzz(maxn), txy(maxn), txz(maxn), tyz(maxn), vcc(maxn),
     &       hxx, hyy, hzz, hxy, hxz, hyz, h, hvcc, he, rhoij

c     Initialization of shear tensor, velocity divergence,
c     viscous energy, internal energy, acceleration

      do i=1,ntotal      
        txx(i) = 0.e0
        tyy(i) = 0.e0
        tzz(i) = 0.e0
        txy(i) = 0.e0
        txz(i) = 0.e0
        tyz(i) = 0.e0
        vcc(i) = 0.e0
        tdsdt(i) = 0.e0
        dedt(i) = 0.e0
        do d=1,dim
          dvxdt(d,i) = 0.e0
        enddo
      enddo

c     Calculate SPH sum for shear tensor Tab = va,b + vb,a - 2/3 delta_ab vc,c

      if (visc) then
        do k=1,niac
          i = pair_i(k)
          j = pair_j(k)
          do d=1,dim
            dvx(d) = vx(d,j) - vx(d,i)
          enddo
          if (dim.eq.1) then
            hxx = 2.e0*dvx(1)*dwdx(1,k)        
          else if (dim.eq.2) then           
            hxx = 2.e0*dvx(1)*dwdx(1,k) -  dvx(2)*dwdx(2,k)
            hxy = dvx(1)*dwdx(2,k) + dvx(2)*dwdx(1,k)
            hyy = 2.e0*dvx(2)*dwdx(2,k) - dvx(1)*dwdx(1,k)

          endif                              
          hxx = 2.e0/3.e0*hxx
          hyy = 2.e0/3.e0*hyy
          hzz = 2.e0/3.e0*hzz
          if (dim.eq.1) then
            txx(i) = txx(i) + mass(j)*hxx/rho(j)
            txx(j) = txx(j) + mass(i)*hxx/rho(i)                 
          else if (dim.eq.2) then           
            txx(i) = txx(i) + mass(j)*hxx/rho(j)
            txx(j) = txx(j) + mass(i)*hxx/rho(i)   
            txy(i) = txy(i) + mass(j)*hxy/rho(j)
            txy(j) = txy(j) + mass(i)*hxy/rho(i)            
            tyy(i) = tyy(i) + mass(j)*hyy/rho(j)
            tyy(j) = tyy(j) + mass(i)*hyy/rho(i)         
              
          endif                              

c     Calculate SPH sum for vc,c = dvx/dx + dvy/dy + dvz/dz:

         hvcc = 0.
         do d=1,dim
           hvcc = hvcc + dvx(d)*dwdx(d,k)
         enddo
         vcc(i) = vcc(i) + mass(j)*hvcc/rho(j)
         vcc(j) = vcc(j) + mass(i)*hvcc/rho(i)
        enddo
      endif   

      do i=1,ntotal
      
c     Viscous entropy Tds/dt = 1/2 eta/rho Tab Tab

        if (visc) then
          if (dim.eq.1) then
            tdsdt(i) = txx(i)*txx(i)                             
          else if (dim.eq.2) then           
            tdsdt(i) = txx(i)*txx(i) + 2.e0*txy(i)*txy(i)  
     &                               + tyy(i)*tyy(i)

          endif   
          tdsdt(i) = 0.5e0*eta(i)/rho(i)*tdsdt(i)
        endif  

c     Pressure from equation of state

        if (abs(itype(i)).eq.1) then
          call p_gas(rho(i), u(i), p(i),c(i))  
        else if (abs(itype(i)).eq.2) then             
          call p_art_water(rho(i), p(i), c(i))
        endif  
  
      enddo

c      Calculate SPH sum for pressure force -p,a/rho
c      and viscous force (eta Tab),b/rho
c      and the internal energy change de/dt due to -p/rho vc,c

      do k=1,niac
        i = pair_i(k)
        j = pair_j(k)
        he = 0.e0
        
c     For SPH algorithm 1

        rhoij = 1.e0/(rho(i)*rho(j))        
        if(pa_sph.eq.1) then  
          do d=1,dim
        
c     Pressure part
                    
            h = -(p(i) + p(j))*dwdx(d,k)
            he = he + (vx(d,j) - vx(d,i))*h

c     Viscous force

            if (visc) then
            
             if (d.eq.1) then
            
c     x-coordinate of acceleration

               h = h + (eta(i)*txx(i) + eta(j)*txx(j))*dwdx(1,k)
               if (dim.ge.2) then
                 h = h + (eta(i)*txy(i) + eta(j)*txy(j))*dwdx(2,k)

                 endif
               endif            
             elseif (d.eq.2) then
            
c     y-coordinate of acceleration

               h = h + (eta(i)*txy(i) + eta(j)*txy(j))*dwdx(1,k)
     &               + (eta(i)*tyy(i) + eta(j)*tyy(j))*dwdx(2,k)

               endif            

!          endif            
           h = h*rhoij
           dvxdt(d,i) = dvxdt(d,i) + mass(j)*h
           dvxdt(d,j) = dvxdt(d,j) - mass(i)*h
          enddo
          he = he*rhoij
          dedt(i) = dedt(i) + mass(j)*he
          dedt(j) = dedt(j) + mass(i)*he        
         
c     For SPH algorithm 2
         
c        else if (pa_sph.eq.2) then
c          do d=1,dim               
c            h = -(p(i)/rho(i)**2 + p(j)/rho(j)**2)*dwdx(d,k)
c            he = he + (vx(d,j) - vx(d,i))*h

c     Viscous force

            if (visc) then            
             if (d.eq.1) then
                       
c     x-coordinate of acceleration

               h = h + (eta(i)*txx(i)/rho(i)**2 +
     &                  eta(j)*txx(j)/rho(j)**2)*dwdx(1,k)
               if (dim.ge.2) then
                 h = h + (eta(i)*txy(i)/rho(i)**2 +
     &                    eta(j)*txy(j)/rho(j)**2)*dwdx(2,k)
                 if (dim.eq.3) then
                   h = h + (eta(i)*txz(i)/rho(i)**2 +
     &                      eta(j)*txz(j)/rho(j)**2)*dwdx(3,k)
                 endif
               endif            
             elseif (d.eq.2) then
            
c     y-coordinate of acceleration

               h = h + (eta(i)*txy(i)/rho(i)**2  
     &               +  eta(j)*txy(j)/rho(j)**2)*dwdx(1,k)
     &               + (eta(i)*tyy(i)/rho(i)**2  
     &               +  eta(j)*tyy(j)/rho(j)**2)*dwdx(2,k)

               endif              
         
           endif              
           dvxdt(d,i) = dvxdt(d,i) + mass(j)*h
           dvxdt(d,j) = dvxdt(d,j) - mass(i)*h
c          enddo
          dedt(i) = dedt(i) + mass(j)*he
          dedt(j) = dedt(j) + mass(i)*he      
c        endif        
c      enddo

c     Change of specific internal energy de/dt = T ds/dt - p/rho vc,c:

      do i=1,ntotal
         dedt(i) = tdsdt(i) + 0.5e0*dedt(i)
      enddo

      end

213

帖子

2

主题

0

精华

宗师

F 币
2126 元
贡献
875 点

规矩勋章

7#
发表于 2020-9-22 10:47:06 | 只看该作者
wx_yxZLpy1y 发表于 2020-9-22 10:18
subroutine int_force(itimestep,dt,ntotal,hsml,mass,vx,niac,rho,
     &        eta,pair_i,pair_j,dw ...

把你的代码放到发帖的<>中。

13

帖子

2

主题

0

精华

入门

F 币
60 元
贡献
36 点
8#
 楼主| 发表于 2020-9-22 16:04:04 | 只看该作者
风平老涡 发表于 2020-9-22 10:47
把你的代码放到发帖的中。

subroutine int_force(itimestep,dt,ntotal,hsml,mass,vx,niac,rho,
     &        eta,pair_i,pair_j,dwdx,u,itype,x,t,c,p,dvxdt,tdsdt,dedt)

c----------------------------------------------------------------------
c   Subroutine to calculate the internal forces on the right hand side
c   of the Navier-Stokes equations, i.e. the pressure gradient and the
c   gradient of the viscous stress tensor, used by the time integration.
c   Moreover the entropy production due to viscous dissipation, tds/dt,
c   and the change of internal energy per mass, de/dt, are calculated.

c     itimestep: Current timestep number                            [in]
c     dt     :   Time step                                          [in]
c     ntotal : Number of particles                                  [in]
c     hsml   : Smoothing Length                                     [in]
c     mass   : Particle masses                                      [in]
c     vx     : Velocities of all particles                          [in]
c     niac   : Number of interaction pairs                          [in]
c     rho    : Density                                              [in]
c     eta    : Dynamic viscosity                                    [in]
c     pair_i : List of first partner of interaction pair            [in]
c     pair_j : List of second partner of interaction pair           [in]
c     dwdx   : Derivative of kernel with respect to x, y and z      [in]
c     itype  : Type of particle (material types)                    [in]
c     u      : Particle internal energy                             [in]
c     x      : Particle coordinates                                 [in]
c     itype  : Particle type                                        [in]
c     t      : Particle temperature                             [in/out]
c     c      : Particle sound speed                                [out]
c     p      : Particle pressure                                   [out]
c     dvxdt  : Acceleration with respect to x, y and z             [out]
c     tdsdt  : Production of viscous entropy                       [out]
c     dedt   : Change of specific internal energy                  [out]

      implicit none
      include 'param.inc'
      
      integer itimestep, ntotal,niac,pair_i(max_interaction),
     &        pair_j(max_interaction), itype(maxn)
      double precision dt, hsml(maxn), mass(maxn), vx(dim,maxn),      
     &       rho(maxn), eta(maxn), dwdx(dim,max_interaction), u(maxn),
     &       x(dim,maxn), t(maxn), c(maxn), p(maxn), dvxdt(dim,maxn),   
     &       tdsdt(maxn),dedt(maxn)
      integer i, j, k, d
      double precision  dvx(dim), txx(maxn), tyy(maxn),
     &       tzz(maxn), txy(maxn), txz(maxn), tyz(maxn), vcc(maxn),
     &       hxx, hyy, hzz, hxy, hxz, hyz, h, hvcc, he, rhoij

c     Initialization of shear tensor, velocity divergence,
c     viscous energy, internal energy, acceleration

      do i=1,ntotal      
        txx(i) = 0.e0
        tyy(i) = 0.e0
        tzz(i) = 0.e0
        txy(i) = 0.e0
        txz(i) = 0.e0
        tyz(i) = 0.e0
        vcc(i) = 0.e0
        tdsdt(i) = 0.e0
        dedt(i) = 0.e0
        do d=1,dim
          dvxdt(d,i) = 0.e0
        enddo
      enddo

c     Calculate SPH sum for shear tensor Tab = va,b + vb,a - 2/3 delta_ab vc,c

      if (visc) then
        do k=1,niac
          i = pair_i(k)
          j = pair_j(k)
          do d=1,dim
            dvx(d) = vx(d,j) - vx(d,i)
          enddo
          if (dim.eq.1) then
            hxx = 2.e0*dvx(1)*dwdx(1,k)        
          else if (dim.eq.2) then           
            hxx = 2.e0*dvx(1)*dwdx(1,k) -  dvx(2)*dwdx(2,k)
            hxy = dvx(1)*dwdx(2,k) + dvx(2)*dwdx(1,k)
            hyy = 2.e0*dvx(2)*dwdx(2,k) - dvx(1)*dwdx(1,k)

          endif                              
          hxx = 2.e0/3.e0*hxx
          hyy = 2.e0/3.e0*hyy
          hzz = 2.e0/3.e0*hzz
          if (dim.eq.1) then
            txx(i) = txx(i) + mass(j)*hxx/rho(j)
            txx(j) = txx(j) + mass(i)*hxx/rho(i)                 
          else if (dim.eq.2) then           
            txx(i) = txx(i) + mass(j)*hxx/rho(j)
            txx(j) = txx(j) + mass(i)*hxx/rho(i)   
            txy(i) = txy(i) + mass(j)*hxy/rho(j)
            txy(j) = txy(j) + mass(i)*hxy/rho(i)            
            tyy(i) = tyy(i) + mass(j)*hyy/rho(j)
            tyy(j) = tyy(j) + mass(i)*hyy/rho(i)         
              
          endif                              

c     Calculate SPH sum for vc,c = dvx/dx + dvy/dy + dvz/dz:

         hvcc = 0.
         do d=1,dim
           hvcc = hvcc + dvx(d)*dwdx(d,k)
         enddo
         vcc(i) = vcc(i) + mass(j)*hvcc/rho(j)
         vcc(j) = vcc(j) + mass(i)*hvcc/rho(i)
        enddo
      endif   

      do i=1,ntotal
      
c     Viscous entropy Tds/dt = 1/2 eta/rho Tab Tab

        if (visc) then
          if (dim.eq.1) then
            tdsdt(i) = txx(i)*txx(i)                             
          else if (dim.eq.2) then           
            tdsdt(i) = txx(i)*txx(i) + 2.e0*txy(i)*txy(i)  
     &                               + tyy(i)*tyy(i)

          endif   
          tdsdt(i) = 0.5e0*eta(i)/rho(i)*tdsdt(i)
        endif  

c     Pressure from equation of state

        if (abs(itype(i)).eq.1) then
          call p_gas(rho(i), u(i), p(i),c(i))  
        else if (abs(itype(i)).eq.2) then             
          call p_art_water(rho(i), p(i), c(i))
        endif  
  
      enddo

c      Calculate SPH sum for pressure force -p,a/rho
c      and viscous force (eta Tab),b/rho
c      and the internal energy change de/dt due to -p/rho vc,c

      do k=1,niac
        i = pair_i(k)
        j = pair_j(k)
        he = 0.e0
        
c     For SPH algorithm 1

        rhoij = 1.e0/(rho(i)*rho(j))        
        if(pa_sph.eq.1) then  
          do d=1,dim
        
c     Pressure part
                    
            h = -(p(i) + p(j))*dwdx(d,k)
            he = he + (vx(d,j) - vx(d,i))*h

c     Viscous force

            if (visc) then
            
             if (d.eq.1) then
            
c     x-coordinate of acceleration

               h = h + (eta(i)*txx(i) + eta(j)*txx(j))*dwdx(1,k)
               if (dim.ge.2) then
                 h = h + (eta(i)*txy(i) + eta(j)*txy(j))*dwdx(2,k)

                 endif
               endif            
             elseif (d.eq.2) then
            
c     y-coordinate of acceleration

               h = h + (eta(i)*txy(i) + eta(j)*txy(j))*dwdx(1,k)
     &               + (eta(i)*tyy(i) + eta(j)*tyy(j))*dwdx(2,k)

               endif            

!          endif            
           h = h*rhoij
           dvxdt(d,i) = dvxdt(d,i) + mass(j)*h
           dvxdt(d,j) = dvxdt(d,j) - mass(i)*h
          enddo
          he = he*rhoij
          dedt(i) = dedt(i) + mass(j)*he
          dedt(j) = dedt(j) + mass(i)*he        
         
c     For SPH algorithm 2
         
c        else if (pa_sph.eq.2) then
c          do d=1,dim               
c            h = -(p(i)/rho(i)**2 + p(j)/rho(j)**2)*dwdx(d,k)
c            he = he + (vx(d,j) - vx(d,i))*h

c     Viscous force

            if (visc) then            
             if (d.eq.1) then
                       
c     x-coordinate of acceleration

               h = h + (eta(i)*txx(i)/rho(i)**2 +
     &                  eta(j)*txx(j)/rho(j)**2)*dwdx(1,k)
               if (dim.ge.2) then
                 h = h + (eta(i)*txy(i)/rho(i)**2 +
     &                    eta(j)*txy(j)/rho(j)**2)*dwdx(2,k)
                 if (dim.eq.3) then
                   h = h + (eta(i)*txz(i)/rho(i)**2 +
     &                      eta(j)*txz(j)/rho(j)**2)*dwdx(3,k)
                 endif
               endif            
             elseif (d.eq.2) then
            
c     y-coordinate of acceleration

               h = h + (eta(i)*txy(i)/rho(i)**2  
     &               +  eta(j)*txy(j)/rho(j)**2)*dwdx(1,k)
     &               + (eta(i)*tyy(i)/rho(i)**2  
     &               +  eta(j)*tyy(j)/rho(j)**2)*dwdx(2,k)

               endif              
         
           endif              
           dvxdt(d,i) = dvxdt(d,i) + mass(j)*h
           dvxdt(d,j) = dvxdt(d,j) - mass(i)*h
c          enddo
          dedt(i) = dedt(i) + mass(j)*he
          dedt(j) = dedt(j) + mass(i)*he      
c        endif        
c      enddo

c     Change of specific internal energy de/dt = T ds/dt - p/rho vc,c:

      do i=1,ntotal
         dedt(i) = tdsdt(i) + 0.5e0*dedt(i)
      enddo

      end

13

帖子

2

主题

0

精华

入门

F 币
60 元
贡献
36 点
9#
 楼主| 发表于 2020-9-22 16:06:50 | 只看该作者
风平老涡 发表于 2020-9-22 10:47
把你的代码放到发帖的中。

我不知道哪里缺少 enddo或者do

213

帖子

2

主题

0

精华

宗师

F 币
2126 元
贡献
875 点

规矩勋章

10#
发表于 2020-9-22 21:11:01 | 只看该作者
wx_yxZLpy1y 发表于 2020-9-22 16:06
我不知道哪里缺少 enddo或者do

现在这个模式,没有行号,无法交流。在你回帖空白框的上方,会看到,其左面是“<>"。按一下这个符号,把代码放入其中,然后回帖。
您需要登录后才可以回帖 登录 | 极速注册

本版积分规则

捐赠本站|Archiver|关于我们 About Us|小黑屋|Fcode ( 京ICP备18005632-2号 )

GMT+8, 2024-11-15 01:33

Powered by Tencent X3.4

© 2013-2024 Tencent

快速回复 返回顶部 返回列表