|
本帖最后由 likm1110 于 2015-5-16 11:52 编辑
Kernel density estiamte 的程序谁会?
我参考的WIKI![]()
![]()
第二张图是kernael estimate.这个图究竟是怎么画的?
第二张图的说明:
‘For the kernel density estimate, we place a normal kernel with variance 2.25 (indicated by the red dashed lines) on each of the data points xi. The kernels are summed to make the kernel density estimate (solid blue curve). The smoothness of the kernel density estimate is evident compared to the discreteness of the histogram, as kernel density estimates converge faster to the true underlying density for continuous random variables’
Wiki连接:http://en.wikipedia.org/wiki/Kernel_density_estimation
我画出来的图形状差不多,但是最大值不一样。
代码:
[Fortran] 纯文本查看 复制代码 017 | Real , Allocatable :: f_hist ( : ) |
018 | Integer , Allocatable :: num ( : ) |
021 | Integer :: xlen , xrange , xranget |
038 | xlen = int ( ( xmax - xmin ) / dbin ) |
039 | Allocate ( num ( xlen ) , f_hist ( xlen ) ) |
043 | Open ( 100 , file = 't_Hist.txt' ) |
045 | xrange = xranget + int ( dbin ) |
046 | num ( i ) = count ( xranget < x ( : ) .and. x ( : ) < xrange ) |
047 | f_hist ( i ) = num ( i ) * ( 1 . / 12 . ) |
048 | Write ( 100 , * ) real ( xranget + xrange ) / 2 . , f_hist ( i ) |
049 | xranget = xranget + int ( dbin ) |
052 | Deallocate ( num , f_hist ) |
060 | Function Fai ( x , mui , segma ) |
062 | Real , Parameter :: pi = 3.1415926 |
063 | Real , Intent ( in ) :: x |
065 | Real , Intent ( in ) :: mui , segma |
068 | Fai = ( 1 . / segma ) * exp ( - x_t * * 2 / 2 . ) / sqrt ( 2 * pi ) |
077 | Real , Parameter :: xvar = 3 . |
078 | Real :: segma = sqrt ( 2.25 ) |
079 | Integer :: i , j , step |
084 | Real , Allocatable :: x_kde_c ( : , : ) , f_kde_c ( : , : ) |
086 | h = 1.06 * segma * ( n ) * * ( -0.2 ) |
087 | step = int ( 2 * xvar / dbin ) +1 |
088 | Allocate ( x_kde_c ( n , step ) , f_kde_c ( n , step ) ) |
091 | Open ( 101 , file = 't_kde_' / / str / / '.txt' ) |
094 | Write ( 101 , * ) x_in , Fai ( x_in , x ( i ) , segma ) / ( h * real ( n ) ) |
096 | f_kde_c ( i , j ) = Fai ( x_in , x ( i ) , segma ) / ( h * real ( n ) ) |
102 | Open ( 102 , file = 't_kde_x.txt' ) |
103 | Open ( 103 , file = 't_kde_f.txt' ) |
106 | Write ( 102 , * ) i , j , x_kde_c ( i , j ) |
107 | Write ( 103 , * ) i , j , f_kde_c ( i , j ) |
112 | Deallocate ( x_kde_c , f_kde_c ) |
114 | End Module EstimatePack |
122 | Integer , Parameter :: n = 6 |
123 | Integer :: step , numx , numf , num |
124 | Integer :: ip , ipi , ipj , i , j , iptr |
128 | Real , Allocatable :: x_kde_temp ( : ) , f_kde_temp ( : ) |
130 | x = ( / -2.1 , -1.3 , -0.4 , 1.9 , 5.1 , 6.2 / ) |
135 | Open ( 11 , file = 't_kde_x.txt' ) |
137 | Read ( 11 , * , iostat = ios ) |
142 | Open ( 12 , file = 't_kde_f.txt' ) |
144 | Read ( 12 , * , iostat = ios ) |
151 | Write ( * , * ) 'data pointa have error' |
155 | Allocate ( x_kde_temp ( num ) , f_kde_temp ( num ) ) |
156 | Open ( 13 , file = 't_kde_x.txt' ) |
158 | Read ( 13 , * ) ipi , ipj , x_kde_temp ( i ) |
161 | Open ( 14 , file = 't_kde_f.txt' ) |
163 | Read ( 14 , * ) ipi , ipj , f_kde_temp ( i ) |
166 | outer : Do i = 1 , num -1 |
168 | inner : Do j = i +1 , num |
169 | minval : If ( x_kde_temp ( j ) < x_kde_temp ( iptr ) ) Then |
173 | swap : If ( i /= iptr ) Then |
175 | x_kde_temp ( i ) = x_kde_temp ( iptr ) |
176 | x_kde_temp ( iptr ) = temp |
177 | tempf = f_kde_temp ( i ) |
178 | f_kde_temp ( i ) = f_kde_temp ( iptr ) |
179 | f_kde_temp ( iptr ) = tempf |
182 | Open ( 15 , file = 't_kde_xf.txt' ) |
184 | Write ( 15 , * ) i , x_kde_temp ( i ) , f_kde_temp ( i ) |
187 | Open ( 16 , file = 't_kde.txt' ) |
190 | If ( i < ip .or. i == ip ) Cycle |
191 | x_kde = x_kde_temp ( i ) |
192 | f_kde = f_kde_temp ( i ) |
194 | If ( abs ( x_kde - x_kde_temp ( j ) ) < 0.0001 ) Then |
195 | x_kde = x_kde_temp ( i ) |
196 | f_kde = f_kde + f_kde_temp ( j ) |
200 | Write ( 16 , * ) x_kde , f_kde |
203 | Deallocate ( x_kde_temp , f_kde_temp ) |
画图用的是't_kde.txt'的数据,得到蓝色实线,我的最大值明显比原图小0.2-0.3(图贴不上来....)
![]()
|
|